桂林电子科技大学电子工程与自动化学院、数学与计算科学学院导师:彭振赟
桂林电子科技大学电子工程与自动化学院、数学与计算科学学院导师:彭振赟内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)
微信,为你答疑,送资源
桂林电子科技大学电子工程与自动化学院、数学与计算科学学院导师:彭振赟 正文
[导师姓名]彭振赟
[所属院校]
桂林电子科技大学
[基本信息]
导师姓名:彭振赟
性别:
人气指数:1668
所属院校:桂林电子科技大学
所属院系:电子工程与自动化学院、数学与计算科学学院
职称:教授
导师类型:硕导/博导
招生专业:数学、生物医学信息检测与仪器
研究领域:科学与工程计算、最优化理论、动力系统模型修正
[通讯方式]
电子邮件:yunzhenp@163.com
[个人简述]
彭振赟,男, 教授,博士,博士后,博士生导师。1985年6月毕业于娄底师范高等专科学校,获数学教育专业专科学历。1991年6月毕业于湖南教育学院,获数学教育专业本科学历。1999年6月毕业于湖南大学毕业,获计算数学硕士学位。2003 年6月毕业于湖南大学,获计算数学博士学位;2006 年6月从中南大学博士后流动站出站。2010 年3 月至2011 年3 月在加拿大New Brunswick 大学做高级访问学者。中国计算数学学会理事,广西数学学会常务理事,桂林电子科技大学计算数学学科学术带头人。2005年9月获教授职称资格,2011年获得博士生导师资格。主持完成国家自然科学基金项目2项,主持完成省部级项目5项。发表学术论文50多篇,其中SCI检索30余篇。2003年获娄底市政府第二届青年科技奖。2013年获广西区自然学奖三等奖.。
[科研工作]
[1] 彭振赟,胡锡炎,子空间上对称矩阵反问题,湖南大学学报,2(2002), 5-9[2] 彭振赟, 矩阵方程ATXA=B的中心对称解及其最佳逼近,长沙电力学院学报,2(2002),3-6.[3] 彭振赟,Jacobi矩阵逆特征问题存在唯一解的条件,数值计算及计算机应用, 3 (2002),226-232[4] Zhen-yun Peng,Xi-yan Hu and Lei Zhang, The inverse problem for part symmetric matrices on a subspace,Journal of Computational Mathematics, 4(2003), 505-512。SCI检索号:706XM[5] 彭振赟, 线性矩阵方程AXB=C的中心对称解及其最佳逼近, 工程数学学报, 6(2003),60-65[6] Zhen-yun Peng,Xi-yan Hu and Lei Zhang, On the construction of a Jacobi matrix from its mixed-type eigenpairs, Linear Algebra and Its Applications, 362 (2003), 191-200。SCI检索号:648MH[7] Zhen-yun Peng and Xi-yan Hu,The reflexive and anti-reflexive solutions of the matrix equation AX=B, Linear Algebra and Its Applications, 375(2003), 147-155。SCI检索号:739JE[8]. Zhen-yun Peng, Least square solutions of matrix equation AXB=E over reflexive matrices X .The Sixth International Conference on Matrix Theory and its Applications in China. Heilongjiang Daxue Ziran Kexue Xuebao 21:4 (2004), 95–98.[9] Zhen-yun Peng and Xi-yan Hu,The Generalized Reflexive Solutions of the Matrix Equations AX=D and AXB=D, Numerical Mathematics A Journal of Chinese Universities English Series (supplement),12(2003),94-98[10] Ya-bo Chen, Yu-yuan Zhou, Zhen-yun Peng, A class of inverse problem for matrices on subspace. Natur. Sci. J. Xiangtan Univ.25(2003), no. 2,122–126.[11] 彭振赟,胡锡炎,张磊,对称次反对称矩阵的一类反问题,高等学校计算数学学报, 2(2003), 144-152[12] 彭振赟, 一类可对称化矩阵反问题的最小二乘解, 数值计算及计算机应用, 3(2004),119-224[13] 彭振赟,矩阵方程 AXB=E 的最小二乘自反解(英文), 黑龙江大学学报, 21:4(2004),95-98。[14] Zhen-yun Peng,Xi-yan Hu and Lei Zhang, The inverse problem of bisymmetric matrices with a submatrix constraint, Numerical Linear Algebra with Applications, 1(2004), 59-73。SCI检索号:771XQ[15] Zhen-yun Peng,Xi-yan Hu and Lei Zhang, The inverse problem of centrosymmetric matrices with a submatrix constraint, Journal of Computational Mathematics, 4(2004), 535-544。SCI检索号:841AP[16] Zhen-yun Peng,Xi-yan Hu and Lei Zhang, The nearest bisymmetric solutions of linear matrix equations, Journal of Computational Mathematics, 6(2004), 873-880。SCI检索号:874KV[17]. Jinwang Liu, Jinjun Hou, Zhenyun Peng, Wensheng Cao, The universal Groebner basis under composition. J. Syst. Sci. Complex. 18:3 (2005), 375–382. [18] Jin-Jun Hou, Zhenyun Peng, Xu-Li Han, The solvability conditions for the inverse problem of symmetrizable nonnegative definite matrices. JP J. Algebra Number Theory Appl. 5:1 (2005), 163–172.[19] 彭振赟,胡锡炎,张磊,双对称矩阵的一类反问题,计算数学,1(2005),11-18[20] Zhen-yun Peng and Xu-li Han, Constructing Jacobi matrices with prescribed ordered defective eigenpairs and a principal submatrix, Journal of Computational and Applied Mathematics, 175(2005), 321-333。SCI检索号:881WF[21] Zhen-yun Peng,The Inverse eigenvalue Problem for Hermitian Anti-reflexive Matrices and Its Approximation, Applied Mathematics and Computation, 162:3(2005),1377-1389。SCI检索号:895KL[22] Zhen-yun Peng,An iterative method for the least squares symmetric solution of the linear matrix equation AXB=C, Applied Mathematics and Computation, 170(2005),711-723。 SCI检索号:979TR[23] Zhen-yun Peng, Yuan-bei Deng and Jin-wang Liu,Least-squares solutions of inverse problem for hermitian anti-reflexive matrices and its appoximation, Acta Mathematica Sinica, English Series, 22:2(2006), 477-484。SCI检索号:020RK[24] Zhen-yun Peng and Ya-xin Peng,An iterative method for the matrix equation AXB+CYD=E, Numerical Linear Algebra with Applications, 13(2006), 473-485。SCI检索号:071XS[25] Jin-jun Hou,Zhen-yun Peng and Xiang-lin Zhang,An iterative method for the least squares symmetric solution of matrix equation AXB = C,Numerical Algorithms, 42(2006) , 181–192。SCI检索号:078LR[26] Zhen-yun Peng, Salah M. El-Sayed and Xiang-lin Zhang, Iterative methods for the extremal positive definite solution of the matrix equation X+A*X-aA=Q,Journal of Computational and Applied Mathematics,200(2007), 520-527。SCI检索号:137FX[27] Zhen-yun Peng and Salah M. El-Sayed,On positive definite solution of a nonlinear matrix equation,Numerical Linear Algebra with Applications, 14 (2007), 99-113。SCI检索号:140UV[28] Zhen-yun Peng,Solutions of symmetry constrained least squares problems,Numerical Linear Algebra with Applications, 15:4(2008), 373-389。SCI检索号:305EQ[29] Zhen-yun Peng, The rank constrained symmetric solution of the matrix equation, Advances in Matrix Theory and its Applications(Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China), 2008, 196-199.[30] Xuefeng Duan,Anping Liao, Zhenyun Peng,A fast reliable algorithm for solving the matrix X-A*XA=C,Proceedings 3rd International workshop on Matrix Analysis, Hangzhou P.R. China, July 9-13,2009, Vol.1, 98-101.[31] Xuefeng Duan,Zhenyun Peng,Fujian Duan, Positive definite solutions of two kinds of nonlinear matrix equations, Surveys in Mathematics and its Applications, 4(2009), 179-190.[32] 段雪峰,廖安平,彭振赟,矩阵方程 的正定解,工程数学学报,26:4(2009), 757-759.[33] Yabo Chen, Zhenyun Peng, Tiejun Zhou, LSQR iterative common symmetric solutions to matrix equations AXB = E and CXD = F, Applied Mathematics and Computation, 217(2010), 230-236. SCI检索号:634KU [34] Chunmei Li, Xuefeng Duan, Zhenyun Peng, Thompson Metric Method for solving a quadratic matrix equation, Proceedings the ninth International Conference on Matrix Theory and its Applications, Shanghai, China, July 18-22, 2010, Vol.1, 105-108.[35] Zhen-yun Peng,A matrix LSQR iterative method to solve matrix equation AXB=C,International Journal of Computer Mathematics,87(2010), 1820 – 1830。SCI检索号:623ZC[36] Zhen-yun Peng,New matrix iterative methods for constraints solutions to matrix equation AXB=C,Journal of Computational and Applied Mathematics,235(2010),726-735。 SCI检索号:657DY[37] Yangjun Ou, Zhenyun Peng, The solvability conditions for one kind of indefinite problems, Proceedings the ninth International Conference on Matrix Theory and its Applications, Shanghai, China, July 18-22, 14(2010), 142-145。[38] 郭斌,彭振赟,下三角矩阵逆奇异值问题的递推算法,长沙大学学报,24:5(2010),7-8.[39] 俞丽彬,彭振赟,一类中心(反)对称矩阵奇异值分解及其算法,桂林电子科技大学学报,30:4(2010),343-345.[40] 王文璞,彭振赟,一类矩阵不定问题有解的条件,计算机与自动化,29:3(2010),53-55.[41] 俞丽彬,彭振赟,一类矩阵方程及其最佳逼近,桂林电子科技大学学报,30:6(2010),609-613.[42] 李春梅,彭振赟,段雪峰,一类Toeplitz矩阵的平方根,桂林电子科技大学学报,31:1(2011),34-36.[43] Zhen-yun Peng, Lin Wang, Jing-jing Peng, The Solutions of Matrix Equation AX=B Over a Matrix Inequality Constraint, SIAM Journal on Matrix Analysis and Applications, 33:2(2012), 554-568. SCI检索号:968PP[44] Anbao Xu,Zhenyun Peng,Norm-constrained least-squares solutions to the matrix equation AXB=C,Proccedings of the seventh Workshop on matrices and Operators, Harbin, China,13-16 Huly,2012, 136-139.[45] Fangying Li,Jingjing Peng,Zhenyun Peng,The least squares stochatic solutions of the matrix equation AX=B,Proccedings of the seventh Workshop on matrices and Operators, Harbin, China,13-16 Huly,2012, 140-144.[46] Jingjing Peng,Zhenyun Peng,The symmetric solutions of the matrix inequality AX≥B in least-squares sense,International Journal of Computer Mathematics,3(2013),554-564. SCI检索,检索号:147QH No20[47] Fangying Li,Jingjing Peng,Zhenyun Peng,The least squares stochatic solutions of the matrix equation AX=B,Journal of Algebra Number Theory:Advances and Applications, 12:8(2012),19-39.[48] An-bao Xu,Zhenyun Peng, Norm-Constrained Least-Squares Solutions to the Matrix Equation AXB = C,Abstract and Applied Analysis, Art. ID 781276, DOI: 10.1155/2013/781276, 2013. SCI检索,检索号:194OQ No21[48]、李姣芬,张晓宁,彭振赟,彭靖静,基于交替投影算法求解单变量线性约束矩阵方程问题,计算数学,36:2(2014),143-162.[49]、李姣芬,彭振赟,彭靖静,矩阵不等式约束下矩阵方程AX=B的双对称解,计算数学,35:2(2013),137-150.[50] 程可欣, 彭振赟, 杜丹丹, 肖宪伟, 矩阵方程 X − ATX−1A = Q的牛顿迭代解法, 工程数学学报,1(2016),63-72. [51]Hongli Qu, Kexin Cheng, Zhenyun peng, Algorithms to compute the interval constrained solutions of the matrix AX=B, Far East Journal of Applied Mathematics, 89:1(2014),15-28.[52] Kexin Cheng,Hongli Qu, Zhenyun Peng, The interval constrained solutions of the matrix equation (AX,XB)=(C,D), JP Journal of Algebra, Number Theory and Applications, 35:1(2014),67-80.
[教育背景]
以上老师的信息来源于学校网站,如有更新或错误,请联系我们进行更新或删除,联系方式
添加桂林电子科技大学学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[桂林电子科技大学考研分数线、桂林电子科技大学报录比、桂林电子科技大学考研群、桂林电子科技大学学姐微信、桂林电子科技大学考研真题、桂林电子科技大学专业目录、桂林电子科技大学排名、桂林电子科技大学保研、桂林电子科技大学公众号、桂林电子科技大学研究生招生)]即可在手机上查看相对应桂林电子科技大学考研信息或资源。
桂林电子科技大学
本文来源:http://www.okaoyan.com/guilindianzikejidaxue/yanjiushengdaoshi_527800.html