黑龙江大学数学研究生考试科目和考研参考书目

微信搜索公众号“考研派之家”,关注【考研派之家】微信公众号,在考研派之家微信号输入【黑龙江大学考研分数线、黑龙江大学报录比、黑龙江大学考研群、黑龙江大学学姐、黑龙江大学考研真题、黑龙江大学专业目录、黑龙江大学排名、黑龙江大学保研、黑龙江大学公众号、黑龙江大学研究生招生)】即可在手机上查看相对应黑龙江大学考研信息或资源

考研真题资料优惠价原价选择
加入购物车立即购买

黑龙江大学数学教材,也叫黑龙江大学数学考研参考书、指定书目等等,是考验专业课复习过程中最重要的资料。考研是一种针对性很强的考试项目,参考书目由报考院校的研究生院制定,考试内容基本上围绕着参考书目展开,而绝大多数专业课都是由院校自行出题,因而就有很强的可操作性和指定性。另外将参考书目与真题结合使用可以分析出出题人的风格和倾向,反复研究之后考生完全可以自行划出重点内容和必考内容。许多考生不重视院系公布的参考书目而把全部精力放在笔记和其他参考资料上,不按照黑龙江大学数学考研指定的书目进行复习,那么即使复习的再好,实力再强,也很有可能会在专业课上栽跟头。【手机访问

黑龙江大学微信
研究生为你答疑,送资源

黑龙江大学数学考研大纲的时候需要对该专业以及该学校进行全方位的了解,数学的考研大纲就是一个很重要的方面。考研大纲是由各院校的研究生院制定并公布的,包括考试的内容、参考书目、研究方向等等内容,直接决定了考生在复习期间的主要内容和侧重点。通过对黑龙江大学数学考研参考书目进行分析可以大致了解该专业的考研试题设置方向,考生应当认真阅读考试大纲中公布的考试科目,选择合适的复习资料,有针对性得进行复习,防止出现事倍功半的无用劳动。考生也可以对开设该专业的不同院校考试大纲进行横向比较,对比选择最适合自己的院校和专业。许多考生在备考期间不重视考试大纲的内容,往往会将许多重要的信息遗漏或是导致复习的方向出现偏差,这都是不应该出现的失误以及错误。考研派的小编提醒各位考研的小伙伴们一定要重视考研大纲的内容哦。

招生年份2021 招生院系:(016)数学科学学院 专业: (070100)数学
门类类别 (07)理学 学科类别: (0701)数学 研究方向:(00)不区分研究方向
考试方式 跨专业: 招生人数:专业:27(不含推免)
招生单位 黑龙江大学 指导老师 :不区分导师 学习方式 :
政治 外语 业务课一 业务课二
(101)思想政治理论 (201)英语一 (720)数学分析 (820)高等代数
院校备注
考试范围
招生年份2021 招生院系:(016)数学科学学院 专业: (070100)数学
门类类别 (07)理学 学科类别: (0701)数学 研究方向:(00)不区分研究方向
考试方式 跨专业: 招生人数:专业:27(不含推免)
招生单位 黑龙江大学 指导老师 :不区分导师 学习方式 :
政治 外语 业务课一 业务课二
(101)思想政治理论 (202)俄语 (720)数学分析 (820)高等代数
院校备注
考试范围
招生年份2021 招生院系:(016)数学科学学院 专业: (070100)数学
门类类别 (07)理学 学科类别: (0701)数学 研究方向:(00)不区分研究方向
考试方式 跨专业: 招生人数:专业:27(不含推免)
招生单位 黑龙江大学 指导老师 :不区分导师 学习方式 :
政治 外语 业务课一 业务课二
(101)思想政治理论 (203)日语 (720)数学分析 (820)高等代数
院校备注
考试范围
招生年份2021 招生院系:(027)中俄学院(中俄联合研究生院) 专业: (070100)数学
门类类别 (07)理学 学科类别: (0701)数学 研究方向:(00)不区分研究方向
考试方式 跨专业: 招生人数:专业:2(不含推免)
招生单位 黑龙江大学 指导老师 :不区分导师 学习方式 :
政治 外语 业务课一 业务课二
(101)思想政治理论 (202)俄语 (750)高等代数 (850)数学分析
院校备注
考试范围
黑龙江大学

在购买参考书时应当注意公布的参考书的年份和版本,如果版本过旧找不到原书,使用新版本也是可以的,但是应当注意将旧版本与新版本不同的内容进行补充。考研派的考研频道内含有大量优质的课堂讲义资源,欢迎考生前去查询和购买。
需要了解数学考研参考书目详细信息的同学,可以点击右侧的联系学姐,考研派的学姐回为你做最专业的解答

黑龙江大学数学研究生分数线
参考书目
[1] 杨兴云等, 高等数学(上), 黑龙江教育出版社, 2009.
[2] 李规范等, 高等数学(下), 黑龙江教育出版社, 2009. 一、考试要求
具有高中代数,平面解析几何,立体几何等基本知识。要求考生掌握一元函数微积分及其应用;常微分方程;空间解析几何;多元函数微积分及其应用;级数的一般理论及综合运算能力。
二、考试内容
第一章 函数与极限
§1 映射与函数
集合,映射,函数;
§2 数列极限
数列极限的定义,收敛数列的性质;
§3 函数的极限
函数的极限的定义,函数极限的性质;
§4 无穷小与无穷大
无穷小,无穷大;
§5 极限运算法则
§6 极限存在准则,两个重要极限
§7 无穷小的比较
§8 函数的连续性与间断点
函数的连续性,函数的间断点;
§9 连续函数的运算与初等函数的连续性
连续函数的和、差、积、商的连续性,反函数与复合函数的连续性,初等函数的连续性;
§10 闭区间上连续函数的性质
有界性与最大值最小值定理,零点定理与介值定理;

第二章 导数与微分
§1导数的概念
引例,导数的定义,导数的几何意义,函数可导性与连续性的关系;
§2函数的求导法则
函数的和、差、积、商的求导法则,反函数的求导法则、复合函数的求导法则,基本求导法则与导数公式;
§3高阶导数
§4隐函数及由参数方程所确定的函数的导数 相关变化率
隐函数的导数,由参数方程所确定的函数的导数,相关变化率;
§5函数的微分
微分的定义,微分的几何意义,基本初等函数的微分公式与微分运算法则,微分在近似计算中的应用;

第三章 微分中值定理与导数的应用
§1微分中值定理
Rolle定理,Lagrange中值定理,Cauchy中值定理;
§2 洛必达法则
§3 泰勒公式
§4 函数的单调性与曲线的凹凸性
函数单调性的判定法,曲线的凹凸性与拐点;
§5 函数的极值与最大值最小值
函数的极值及其求法,最大值最小值问题;
§6 函数图形的描绘
§7 曲率
弧微分,曲率及其计算公式,曲率圆与曲率半径;
§8 方程的近似解
二分法,切线法;

第四章 不定积分
§1 不定积分的概念与性质
原函数与不定积分的概念,基本积分表,不定积分的性质;
§2 换元积分法
第一类换元法,第二类换元法;
§3 分部积分法
§4 有理函数的积分
有理函数的积分,可化为有理函数的积分举例;
§5 积分表的使用

第五章 定积分
§1 定积分的概念与性质
定积分问题举例,定积分定义,定积分的近似计算,定积分的性质;
§2 微积分基本公式
变速直线运动中位置函数与速度函数之间的联系,积分上限函数及其导数,Newton—Leibniz公式;
§3 定积分的换元法和分部积分法
定积分的换元法,定积分的分部积分法;
§4 反常积分
无穷限的反常积分,无界函数的反常积分;

第六章 定积分的应用:
§1 定积分的元素法
§2 定积分在几何学上的应用
平面图形的面积,体积,平面曲线的弧长;
§3 定积分在物理学上的应用
变力沿直线所作的功,水压力,引力;

第七章 微分方程
§1 微分方程的基本概念
§2 可分离变量的微分方程
§3 齐次方程
齐次方程;
§4 一阶线性微分方程
线性方程;
§5 可降阶的高阶微分方程
型微分方程, 型微分方程, 型微分方程;
§6 高阶线性微分方程
二节线性微分方程举例,线性微分方程的解的结构;
§7常系数齐次线性微分方程
§8常系数非齐次线性微分方程
型,型;

第八章 空间解析几何与向量代数
§1 向量及其线性运算
向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量的模、方向角、投影;
§2 数量积 向量积
两向量的数量积、两向量的向量积;
§3 曲面及其方程
曲面方程的概念,旋转曲面,柱面,二次曲面;
§4 空间曲线及其方程
空间曲线的一般方程,空间曲线的参数方程,空间曲线在坐标面上的投影;
§5 平面及其方程
平面的点法式方程,平面的一般方程,两平面的夹角;
§6 空间直线及其方程
空间直线的一般方程,空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角,杂例;

第九章 多元函数微分法及其应用
§1 多元函数的基本概念
平面点集、多元函数的概念,多元函数的极限,多元函数的连续性;
§2 偏导数
偏导数的定义及其计算法,高阶偏导数;
§3 全微分
全微分的定义;
§4 多元复合函数求导法则
§5 隐函数求导公式
一个方程的情形,方程组的情形;
§6 多元函数微分学的几何应用
一元向量值函数及其导数,空间曲线的切线与法平面,曲面的切平面与法线;
§7 方向导数与梯度
方向导数、梯度;
§8 多元函数的极值及其求法
多元函数的极值及最大值、最小值,条件极值,拉格朗日乘数法;

第十章 重积分
§1 二重积分的概念与性质
二重积分的概念,二重积分的性质;
§2 二重积分计算法
利用直角坐标系计算二重积分,利用极坐标系计算二重积分;
§3 三重积分
三重积分的概念,三重积分的计算;
§4 重积分的应用
曲面的面积,质心,转动惯量,引力;

第十一章 曲线积分与曲面积分
§1 对弧长的曲线积分
对弧长的曲线积分的概念与性质,对弧长的曲线积分的计算法;
§2 对坐标的曲线积分
对坐标的曲线积分的概念与性质,对坐标的曲线积分的计算法,两类曲线积分之间的联系;
§3 Green(格林)公式及其应用
Green公式,平面上曲线积分与路径无关的条件,二元函数的全微分求积;
§4 对面积的曲面积分
对面积的曲面积分的概念与性质,对面积的曲面积分的计算法;
§5 对坐标的曲面积分
对坐标的曲面积分的概念与性质,对坐标的曲面积分的计算法,两类曲面积分之间的联系;
§6 高斯公式
高斯公式;
§7  斯托克斯公式
斯托克斯公式;

第十二章 无穷级数
§1 常数项级数的概念和性质
常数项级数的概念,收敛级数的基本性质;
§2 常数项级数的审敛法
正项级数及其审敛法,交错级数及其审敛法,绝对收敛与条件收敛;
§3 幂级数
函数项级数的概念,幂级数及其收敛性,幂级数的运算;
§4 函数展开成幂级数
§5函数的幂级数展开式的应用
近似计算、微分方程的幂级数解法、欧拉公式;
§7 傅里叶级数
三角级数 三角函数系的正交性,函数展开成傅里叶级数,正弦级数和余弦级数;
§8 一般周期函数的傅里叶级数
周期为2l的周期函数的傅里叶级数;

三、试卷结构
1.考试时间:180分钟
2.试卷分值:150分
3.题型结构:(1)选择题
            (2)填空
            (3)大题(包括证明题、计算题)
四、参考书目
    《高等数学》(第六版),同济大学数学系,高等教育出版社。
提问:法硕法学在职今年招多少人? 学费?
回复:我校已经公布了招生章程,包括了招生计划在内,可自行查看。学费为每年9000元。详情请见研究生院官网http://210.46.97.212/content_view.asp?id=16307
统计学专业成立于2004年,最初命名为统计学(精算)专业,2012年正式更名为统计学专业。在院领导的正确指引下,专业发展速度稳步提升。本专业现有教师10人,其中4人具有博士学位,3人正在攻读博士学位,其他3人均具有硕士学位。自成立以来,统计学专业已经培养了近300名本科毕业生,其中包括多名准精算师,另有多名毕业生考取了中科院、哈尔滨工业大学、北京师范大学、东北师范大学、中央财经大学等知名院校的研究生。统计学专业每年的本科就业率均在90%左右。
精算师培养是本专业的培养特色之一。2009年,我院成功申办了精算师考试中心,该中心的成立对我省精算人才的培养起到了积极的作用,同时对我们本专业的进一步发展也起到了较大的促进作用。
统计系的主要研究方向有:生物统计学、应用统计学、生物信息学、以及大数据分析。在研究生培养方面,我院拥有统计学一级学科硕士学位授权点,以及应用统计硕士专业学位授权点。本专业教师积极参与学院的教学和科研工作,近五年承担或参与国家级项目4项,省级项目1项,教育厅项目6项,每年均发表一定数量的科研论文;同时,本专业有多名专任教师承担了各级教改项目10余项,出版教材2部,发表教学论文近20篇。
为进一步加强与国内外的学术合作和交流,2012年,我院承办了“第八届海峡两岸统计与概率学术研讨会”;与此同时,本专业每年均邀请知名的统计学者来我院为学院师生做科研报告。黑龙江大学数学科学学院的统计学专业正处在发展的关键阶段,希望有识之士能加入团队与我们共谋发展,也欢迎广大考生报考我们统计学专业攻读学士学位或硕士学位!
一、考试要求
1.要求考生全面系统地掌握本学科专业基础知识和专业综合知识,并且能运用所学的基本理论和方法,说明和解决相关问题。
2.考试为笔试、闭卷形式。首先考察学生对基本概念的理解;其次是重点掌握对基本公式、基本方法和基本运算技巧的灵活应用;最后考察学生的逻辑推理能力。
二、考试内容
    第1章 函数:
● 知识点: 1、函数的概念及表示法;2、函数的有界性、单调型、周期性和奇偶性;3、复合函数、反函数、分段函数和隐函数;4、基本初等函数的性质及其图形;5、初等函数,函数关系的建立。
第2章 极限和连续:
● 知识点: 1、数列极限与函数极限的定义及其性质; 2、函数的左极限右极限;3、无穷小量和无穷大量的概念及其关系; 4、无穷小量的性质及无穷小量的比较;5、极限的四则运算;6、极限存在的两个准则:单调有界准则和夹逼准则;7、两个重要极限;8、函数连续的概念和函数间断点的类型;9、初等函数的连续性及闭区间上连续函数的性质。
    第3章 导数和微分:
● 知识点:1、导数和微分的概念及几何意义和物理意义; 2、函数的可导性与连续性之间的关系;3、平面曲线的切线和法线;4、导数和微分的四则运算;5、基本初等函数的导数,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;6、高阶导数及一阶微分形式的不变性。
    第4章 中值定理:
● 知识点:1、 微分中值定理;2、洛必达法则;3、函数单调性的判别;4、函数的极值及最大值、最小值;5、函数图形的凹凸性、拐点及渐近线。
第5章:不定积分:
● 知识点:1、原函数和不定积分的概念;2、不定积分的基本性质;3、基本积分公式。
第6章:定积分:
● 知识点:1、定积分的概念和基本性质;2、定积分中值定理;3、积分上限的函数及其导数;4、牛顿—莱布尼茨公式;5、不定积分和定积分的换元积分法与分部积分法;6、有理函数和三角函数的有理式的积分;7、广义积分。
第7章:定积分的应用:
● 知识点:1、平面图形的面积;2、几何体的体积。
第8章 多元函数微分法及其应用:
● 知识点:1、多元函数的概念及几何意义;2、二元函数的极限与连续的概念;3、有界闭区域上二元连续函数的性质;4、多元函数的偏导数和全微分;5、多元复合函数、隐函数的求导法;6、二阶偏导数;7、多元函数的极值、条件极值、最大值和最小值。
第9章:多元函数的积分:
● 知识点:1、二重积分的概念和性质;2、利用直角坐标和极坐标计算二重积分。
第10章:常微分方程:
●知识点:1、常微分方程的基本概念;2、可分离变量的微分方程、齐次微分方程一阶线性微分方程的解法;3、微分方程的简单应用。
三、试卷结构
1.考试时间:180分钟
2.试卷分值:150分
3.题型结构:(1)选择题(约40分)
            (2)填空题(约24分)
            (3)解答题(约86分)
四、参考书目
[1] 杨兴云等, 高等数学(上), 黑龙江教育出版社, 2009.
[2] 李规范等, 高等数学(下), 黑龙江教育出版社, 2009.
数学 [070100] 学术学位

专业信息

所属院校:黑龙江大学
招生年份:2020年
招生类别:全日制研究生
所属学院:中俄学院(中俄联合研究生院)
所属门类代码、名称:[07]理学
所属一级学科代码、名称:[01]数学

专业招生详情

研究方向: (00)不区分研究方向
招生人数: 2
考试科目: ①(101)思想政治理论
②(202)俄语
③(750)高等代数
④(850)数学分析
备  注:
参考书目
    《高等数学》(第六版),同济大学数学系,高等教育出版社。
数学 [070100] 学术学位

专业信息

所属院校:黑龙江大学
招生年份:2020年
招生类别:全日制研究生
所属学院:中俄学院
所属门类代码、名称:[07]理学
所属一级学科代码、名称:[01]数学

专业招生详情

研究方向:
招生人数: 2
考试科目: ①101 思想政治理论
②202 俄语
③750 高等代数
④850 数学分析(中俄学院单独命题)
备  注:
我的大学生活画上一个句号。选择了考研路,大家一定要坚持自己的想法与目标。不能被外面的一些东西干扰。说说我自己的情况,属于专升本的学生,选择考研这段路还是有一定的艰难。现在回顾过去的那一年,感觉很充实,同时有着遗憾。
  我开始准备是大三下学期,真正全心全意投入准备复习是4月底。
  数学篇
  资料:同济版高数(二遍)、浙大概率(二遍)、线代(二遍)、李永乐的全书(二遍),李永乐的线代(二遍)、李永乐和王式安的十年真题(二遍),李永乐的公式(一遍),李永乐和王式安的6+2(半遍)、高教版出的数学模拟题(二遍)、李永乐660(未看)
  我考的是数三,相对数一来说,考试范围小些,难度没有那么大。但是数一与数三的每年都有想类似的考题,特别是在线代与概率大题,一模一样。你们可以看看,曾经我是看过的。
  四月底的时候我把同济版二本高数看完,并做了部分课后习题。(注意:如果你考数三,建议看微积分,那个难度没有同济的大,并且书上面的大多数内容是数三的考点。如果你直接看数一,对于数学基础为零的同学,你可能会感觉有些难,不会知道哪些是考点。当时我就是看到别人说,准备数学就看同济版课本,后来无意看《微积分》那本书,发现当初就该看它)。大三开学开始看数学课本(同济版本)。
  由于之前没有怎么学习过,一切通过自学。由于三月份要参加全国计算机二次考试,所有三月份大多数在准备计算机,没有怎么准备考研。大概四月底的时候,我把同济高数二本书看完了。4月底,正式进入考研复习,数学我采用逐章复习法,就是看一章课本,再看相应的视频,最后看全书。第二遍看高数课本,相对于之前容易多了,并且课后习题正确率提高了。但是看全书就比较吃力了,有些题我完全看不懂。对于不懂得题,我都有备注,同时请教教室的同学。
  我这个人有个特点,就是好问,我不懂得数学题,我就跑去请教别人,直到自己弄懂为止。整个过程复习下来,有些题我问了好几次才弄懂。
  不推荐报面授班,面授班比较浪费时间,网上下载视频,到手机上面看,感觉高效。在看视频的时候,不是只看,当然还要手写做笔记。
  这样大概复习到7月初,这时也开始进入暑假我才把高数部分复习完,相对一些学习过的高数的同学,我的进度比较慢。没有办法,自己的基础不行,只有慢慢来,那时心态一定要好,当时我一个朋友6月份复习的全书,他都要复习完了,我才看高数。所有还是有点急,后来想想我们的基础不一样,自己就按照自己的方式来。高数复习完,我就看开始看线代课本。线代课本看完后,我又采用逐章复习法,看一章课本,再看视频,最后看的李永乐的线代,全书的线代部分我没有看。大概是八月初复习完的。概率复习,我也采用同样的方法复习。最后复习完是8月20多号左右。
  第二轮全书复习时,我先复习的概率,然后线代,最后高数。第二次复习的时候,看全书没有第一次那么的吃力了,可能大概看了一遍吧。我第二轮看全书大概花了一个多月。每天差不多7小时,我周边有人每天花四小时,二十多天就把全书看完。在这里,我再次说明每个人的基础不一样,不能与他们相比,我跟着自己的脚步走。在九月份的时候,身边的人在考试做李永乐的660题,我开始做了一些,发现难度有些大,做错的题多,就放弃了。
  到十月初的时候,我把全书的第二遍看完。开始做李永乐和王式安的十年真题,每天一套,开始只有五六十分。有些题还是不会做,自己心态比较好,慢慢来。发现自己概率有些差,我把全书中的概率部分又看完了一篇。把这本书看完时,我就买了一本模拟题,高教版出的,好像作者是黄莉,具体忘记了,感觉那试卷很好。具体有几套我忘记了,今年数三的考题,能在那个模拟题中找到类似的题。做完这本模拟题,数学有些茫然,我就去买了一本李永乐和王式安的6+2,这本试题集前面试卷比较简单,后面感觉题型偏难偏怪,我就放弃了。最后我又过来看李永乐和王式安的十年真题。把自己之前做的题重点看了一篇。这差不多就是我的数学备考了。
  开始复习会有很多困难,很多不懂。复习到了最后,你看题就知道这个是哪种类型的题,考什么知识点。看近几年的真题,能估算今年可能考那些类型的题。所以,开始复习不要急,慢慢来的到,知识点了解透彻了,就能水到渠成了。
  教训篇
  1、发现自己感觉自己成绩不是那样的,果断查分。
  当考研成绩出来时,感觉自己某科成绩太差,嫌弃查分麻烦就果断放弃查分的机会了,当时我朋友还说我怎样那样对自己不负责。我当时就想查分查出来也不能进理想大学的复试,所以就放弃了。哪只今年大多数高校学硕降分了。所以如果你们感觉成绩不会那么差,果断查分吧,不管能否有机会进入复试,对自己负责,给自己的付出要一份答案。后来听别人说,我们教室有个人查分,找回来10分。
  2、选择了考研,千万不要去找工作,更不要去面试,不用关注就业信息。
  考研的时候,去面试了一个单位,感觉自己即使读研出来都不一定能进入那样好的单位,就想不读研就能去个好单位,何必读研呢,然后就有些放弃考研了。最后工作也没有去成。在考研的时候,看到别人找到好的工作,或许你读研出来找的工作都没有那么好,千万不要放弃考研,就选择工作了。虽然读研出来还是要工作,或者读研为了找更好的工作。但是你要想想,很多东西不是你想的那样。自己要保持一个继续求知学习的心态。说不定你读研出来才5000一个月,你没有读研的同学工作不到一年就1万一个月月。这些都是很正常的。你不要想到我读研出来还不如本科生,或者其他的。
  3、明确报考学校是不是自己真的想去的。
  最后,希望大家一定要确定好自己的目标,当时自己就感觉自己报考的学校不怎样,不是自己想要的,也有点气妥。你们决定报考学校前,一定要向考上的学姐学长多多了解,比如学风、导师、环境。这个完全是个人建议,感觉把目标定高点,等到考研报名的时候,发现自己复习的不好,可以根据自己的复习情况,再改学校。有时人是逼出来的,你不知道你的潜力多大,目标高了,有些动力更强了。纯属于个人观念。
  心态篇
  选择考研,可能选择了孤独,放弃了一些娱乐。当时准备考研的时候,我一个人跑去找教室,找位子,教室一个人都不熟悉。特别是看数学的时候,经常会不懂,人都是被逼出来的吧,不会懂得题必须要解决,我只有厚起脸皮问别人,问了一个又一个,因为有些同学不会常在。有时在教室,看到别人认真的看书,自己想偷懒的时候,更有动力了。大学认识的人很少,因为这一年准备考研,发现这一年认识的人是最多的。
  考研到了后期,特别是12月份,看着自己很多没有复习好,很容易否定自己,自己放弃,每天上自习心不在焉,这时一定要调整好自己,自己要给自己加油。因为我发现周围很多人到了后期就是自己选择放弃了,包括我自己。那时坚持不放弃,坚定目标,或许结果又不一样。所以到了后期,一定不要被自己打败,即使感觉自己复习的太差,但是不知道结果你也不知道会怎么样,所以一定不能放弃,要一直为自己的目标奋战、加油↖(^ω^)↗。

关于数学课本的学习方法
记得当初复习的时候就听很多人说考研数学注重基础,数学课本如何如何重要,应该花大量时间去看。现在感觉这种观点有些片面,我十分认同考研数学注重考查基础的观点,但并不赞同重基础就是多看课本。
我这样讲是有原因的:大家用的课本大多是同济六版的,内容很多,当你把这本书拿在手里并参考大纲进行比对时,你会发现哪些部分比较重要,哪些部分不重要或不考,但你不会明白考研数学如何对这一部分进行考查。
同济课本不是专门为考研而编写的因而其课后题与考研题相去甚远,即使你把课本上所有的题目都掌握之后,也不见得会做几道考研题。
我的一个同学就是一心只看课本,几乎没做过其他参考书,考试之后他对我说:"这些题我都看着面熟,就是不会做!"其中原因是什么呢?结果不言而喻。因此,学弟学妹们无需把课本看得过重。
关于复习全书的学习方法
我认为这是一本与考研数学联系很密切的参考书,其中总结了不少考研数学的题型,是很不错的。如果大家能够将辅导强化班的笔记里的题型和全书题型结合起来总结一本笔记的话,对你考研数学档次提升的帮助将是巨大的。
我就是这样做的:全书第二遍和辅导班笔记整合起来总结题型,花费了大约五个月时间,最终大功告成,这一遍的总结对我影响甚大,之后我就没看过全书,因为题型和做题方法已经掌握的差不多了,不需要再去翻全书。这项工作是费时费力的,希望大家量力而行!
关于660、真题和400题的学习方法
660题是一本只有选择和填空的参考书,我做过两遍,感觉其技巧性是很多的,做过之后你会对考研的选择填空有新的认识,不过,考研题是不如660难的。
真题我只做了一遍,而且是从2000到2010年,之前的没做。真题是比较简单的,大部分题目我一遍就过了,并没有在上面花很多时间,也没有研究的必要。考研题的出题模式是很固定的,只要不出现计算错误肯定是没有问题的。
400题是我很青睐的一本书,我的做题速度就是靠它练出来的。对于400题,我的做法是:上午拿出三个小时模拟,尽量在规定时间内完成所有题目,400题是比较难的,计算量一般也会很大,因而出现不会做或做不完的情况也是很正常的。
这个时候千万不要失落和放弃,一定要坚持下来,慢慢就会适应的。当你经过周密的思考和复杂的计算能够做对题目,拿下130+的分数时,说明你的数学已经掌握的不错了。
还有一点,要加强对数学理论的研究,你可以试着用一种通俗的方式将一条晦涩的定理将给同学听,使他也能够明白。如果能够达到这样的话,说明你已领悟了该定理的真谛,做题也就没什么难的了!
总之,对待数学要勤于思考,善于总结,平时多做多练,得高分还是相对容易的。

数学 [070100] 学术学位

专业信息

所属院校:黑龙江大学
招生年份:2021年
招生类别:全日制研究生
所属学院:数学科学学院
所属门类代码、名称:[07]理学
所属一级学科代码、名称:[01]数学

专业招生详情

研究方向: (00)不区分研究方向
招生人数: 27
考试科目: ①(101)思想政治理论
②(201)英语一
③(720)数学分析
④(820)高等代数
或①(101)思想政治理论
②(202)俄语
③(720)数学分析
④(820)高等代数
或①(101)思想政治理论
②(203)日语
③(720)数学分析
④(820)高等代数
备  注:
第一部分 课程基本信息
【课程性质】 学科与专业必修课程
【课程基础】 掌握高中代数,平面解析几何,立体几何等基本知识。
【适应对象】 化学化工与材料学院 化学、化学实验班、应用化学、材料化学、环境科学、高分子材料与工程、制药工程(化学制药)专业的本科生,生命科学学院 生物工程、生物技术、制药工程(生物制药)、食品科学与工程专业的本科生,建筑工程学院 土木工程(给水排水工程)专业的本科生,农业资源与环境学院 农业资源与环境、种子科学与工程、水土保持与荒漠化防治专业的本科生,信息管理学院 信息管理与信息系统、电子商务等专业的本科生,信息科学技术学院计算机科学与技术学院(网络工程)专业的本科生,国际文化教育学院 理科专业的本科生。
【教学目的】 本课程是高等学校理工科(本科)相关专业的一门必修的基础课,它为学习后续课程提供必要的数学知识。同时还能培养学生的抽象思维能力、逻辑推理能力、空间想象能力及综合运算能力,进一步提高学生分析问题和解决问题的能力,对今后的学习、研究和应用都具有关键的作用。
【内容提要】 一元函数微积分及其应用;空间解析几何;多元函数微积分及其应用;级数的一般理论;常微分方程。本课程分两学期讲授,其中第一学期讲授第一至六章(75学时),第二学期讲授第七至十一章(90学时),总学时为165学时(具体分配情况可参考第二部分),其中带*号的内容为选讲内容。
第二部分 主要教学内容和基本要求
【主要教学内容】
第一章 函数
第一节  集合与映射
一、集合的基本概念及其运算
二、区间和邻域
三、映射的概念及应用举例
第二节 函数及其基本性质
一、函数的概念
二、复合函数与反函数的概念
三、函数的几种特性
四、初等函数
【基本要求】
一、熟练掌握集合的基本理论和函数、函数的定义域、值域、初等函数的概念,并能建立简单应用问题中的函数关系式;熟练掌握基本初等函数的性质及图像。
二、掌握函数的性质(奇偶性、单调性、周期性和有界性)。
三、了解映射、单射、满射、一一映射、复合映射与逆映射;了解复合函数及分段函数的概念,了解反函数和隐函数的概念。
【参考学时】 5学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第二章 极限与连续
第一节  极限的定义
一、函数的极限
二、无穷小与无穷大
三、数列的极限
第二节 极限的性质及运算法则
一、极限的性质
二、极限的四则运算法则
三、复合函数的极限运算法则
第三节  极限存在准则 两个重要极限
一、极限存在的两个准则
二、两个重要极限
三、应用举例
第四节 无穷小的比较
一、无穷小的阶的比较
二、等价无穷小之间的关系
三、等价无穷小替换求极限
第五节 函数的连续性
一、函数的连续性的概念
二、函数的间断点
三、连续函数的运算
四、初等函数的连续性
第六节 闭区间上连续函数的性质
一、有界性与最大、最小值定理
二、零点定理与介值定理
第七节 极限计算方法举例
【基本要求】
一、熟练掌握极限存在与左右极限之间的关系,极限的性质及四则运算法则;熟练掌握用变量代换求某些简单复合函数的极限,熟练掌握两个重要极限和无穷小的性质求极限;熟练掌握连续函数的运算法则,并能利用初等函数的连续性计算极限。
二、掌握并理解极限的概念、函数连续性的概念和函数在一区间上连续的概念,能正确判断常用初等函数间断点的类型;能利用连续函数的性质证明较简单的问题;掌握无穷小量的定义和阶的概念及其简单的运算。掌握无穷小与无穷大的概念、极限存在的两个准则,掌握闭区间上连续函数的性质。
【参考学时】 15学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第三章 导数与微分
第一节 导数的概念
一、导数的概念
二、导数的几何意义
三、函数可导性与连续性的关系
第二节 导数的运算法则
一、函数的和、差、积、商的求导法则
二、反函数、复合函数的求导法则
三、基本初等函数的导数公式
四、初等函数的求导方法
第三节 高阶导数
一、高阶导数的概念
二、高阶导数的计算方法举例
第四节 隐函数及由参数方程所确定的函数的求导方法
一、隐函数的导数
二、由参数方程所确定的函数的导数
三、取对数求导方法和相关变化率。
第五节 微分及其应用
一、微分的定义及基本运算法则
二、微分的几何意义
三、微分形式的不变性
四、微分在近似计算中的应用。
【基本要求】
一、熟练掌握用导数与微分的运算法则求函数的导数与微分的方法;熟练掌握基本初等函数的求导公式;熟练掌握隐函数、反函数和由参数方程确定的函数的导数以及这两类函数中比较简单函数的二阶导数,会解一些简单实际问题中相关变化率问题。
二、掌握并理解导数和微分的概念;掌握导数、微分与连续之间的关系及导数的几何意义,会求平面曲线的切线方程和法线方程。
三、了解导数的物理意义,会用导数描述一些物理量;了解微分概念中所包含的局部线性化思想,了解微分的有理运算法则和一阶微分形式不变性;了解微分在近似计算中的应用;了解高阶导数的概念,会求简单函数的n阶导数。
【参考学时】 15学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第四章 微分中值定理与导数的应用
第一节 微分中值定理
一、Fermat定理
二、Rolle定理
三、Lagrange中值定理
四、Cauchy中值定理
第二节 L'Hospital法则
一、型的L'Hospital法则及其应用
二、型的L'Hospital法则及其应用
第三节 函数图形的某些几何性态的研究
一、函数单调性与极值
二、曲线的凹凸性与拐点
三、函数的极值与最大值、最小值问题
四、函数图形的描绘
第四节 Taylor公式
一、Taylor公式
二、Taylor公式的应用
第五节* 方程的近似解
【基本要求】
一、熟练掌握L'Hospital法则,并能运用其计算各种不定型的极限;熟练掌握利用导数判断函数的升降、确定函数的极值与最值、以及判断函数的凸凹性和拐点的方法。
二、掌握并理解Rolle定理、Lagrange中值定理并会运用。
三、了解Cauchy中值定理和Taylor中值定理。
【参考学时】 13学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第五章 一元函数的积分学
第一节 定积分的概念及其基本性质
一、定积分问题举例
二、定积分的定义
三、定积分的基本性质
第二节 Newton-Leibniz公式
一、变速直线运动中位置函数与速度函数之间的联系
二、原函数的概念
三、积分上限函数及其导数
四、Newton—Leibniz公式
第三节 不定积分
一、不定积分的概念与基本性质
二、不定积分的换元积分法
三、不定积分的分部积分法
第四节 有理函数及某些可化为有理函数的积分
一、有理函数的积分
二、三角函数有理式的积分
三、根式函数有理函数的积分
四、积分表的使用方法
第五节 广义积分
一、无穷限的广义积分
二、无界函数的广义积分
第六节 定积分的计算
一、定积分的换元积分法
二、定积分的分部积分法
三、定积分的计算举例
【基本要求】
一、熟练掌握定积分的基本性质和不定积分的基本公式以及求不定积分、定积分的换元积分法和分部积分法(淡化特殊积分技巧的训练),并能灵活运用;熟练掌握Newton-Leibniz公式。
二、掌握并理解定积分的概念与几何意义(对于利用定积分定义求定积分与求极限不作要求);掌握原函数、不定积分的概念,理解积分上限函数及其求导定理。
三、了解一些有理函数的积分方法、两类广义积分及其收敛性及的概念。
【参考学时】 17学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第六章 定积分及其应用
第一节 定积分的元素法简介
一、定积分的元素法
第二节 定积分在几何学中的应用
一、平面图形的面积
二、某些立体的体积
三、平面曲线的弧长
第三节 *定积分在物理学、化学、生物学中的应用
一、变力沿直线所作的功
二、液体的压力
三、物体的引力
四、黏液定常流动时管流量的测定
五、平均值
【基本要求】
一、掌握科学技术问题中建立定积分表达式的元素法,会运用定积分的元素法求平面图形的面积、已知平行截面面积的立体的体积、旋转体的体积、光滑曲线的弧长;
二、了解定积分在物理、化学、生物学等方面上的应用.
【参考学时】 10学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第七章 向量代数与空间解析几何简介
第一节 向量及其线性运算
一、空间直角坐标系
二、向量的概念及线性运算
三、向量的模、方向角、投影
第二节 向量的数量积与向量积
一、两向量的数量积
二、向量积
三、*混合积
第三节 平面与空间曲线
一、平面方程
二、空间直线方程
第四节 曲面和空间曲线
一、曲面方程的概念
二、空间曲线方程
三、空间曲线在坐标面上的投影
四、柱面
五、旋转曲面与常见的二次曲面
【基本要求】
一、熟练掌握空间直角坐标系,会求两点间的距离;熟练掌握向量的概念、表示及其运算法则;熟练掌握用坐标表达式进行向量运算; 熟练掌握向量的数量积、向量积;熟练、掌握直线和平面方程的概念及其求法。
二、理解解向量垂直与平行的条件;理解空间曲线在坐标面上的投影。理解曲面方程的概念;理解空间曲线方程的概念、
三、了解混合积;了解空间点线、点面之间的距离;了解线线、线面、面面间的夹角和距离;了解空间曲线的参数方程和一般方程。
【参考学时】 10学时
【参考资料】 杨兴云等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第八章 多元函数的微分学及其应用
第一节 多元函数的基本概念
一、平面点集
二、多元函数的概念
三、二元函数的几何意义
第二节 多元函数的极限与连续
一、多元函数的极限
二、多元函数的连续性
三、有界闭区域上连续函数的性质
第三节 偏导数与全微分
一、偏导数的概念、计算
二、高阶偏导数
三、全微分的概念、全微分存在的条件及计算
第四节 复合函数偏导数的求导法则
一、复合函数偏导数的求导法则
二、复合函数的偏导数的计算
三、一阶全微分形式的不变性
第五节 隐函数微分法
一、一个方程的情形
二、方程组的情形
第六节 方向导数和梯度
一、方向导数的概念及计算
二、梯度的概念及其意义
第七节 *多元函数的Taylor公式
第八节 多元函数的极值
一、多元函数的极值的概念及计算
二、多元函数的最大(小)值的计算
三、条件极值与*拉格朗日乘数法
第九节 多元函数微分学在几何上的应用
    一、空间曲线的切线与法平面
二、空间曲面的切平面与法线
【基本要求】
一、熟练掌握偏导数、全微分及其简单函数的高阶偏导数的求法;熟练掌握多元函数极值存在的必要条件,会求简单多元函数的极值、最大(小)值及其简单应用题。
二、掌握并理解二元函数的概念及其几何意义;掌握并理解偏导数,全微分的概念与多元函数极值和条件极值的概念。
三、了解多元函数的概念、方向导数和梯度的概念及计算方法;了解空间曲线的切线与法平面方程、空间曲面的切平面与法线方程的求法;了解二元函数的极限与连续的概念以及闭区域上连续函数的性质;了解Lagrange乘数法。
【参考学时】 20学时
【参考资料】 李桂范等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第九章 多元函数的积分学及其应用
第一节 几何体上的积分及其基本性质
一、何体上的积分的概念
二、几种常见形式的几何体上的积分
三、几何体上积分的基本性质
第二节 二重积分的计算法
一、二重积分的几何意义
二、直角坐标系与极坐标系下二重积分的计算
第三节 三重积分的计算
一、在直角坐标下计算三重积分
二、在柱坐标系下计算三重积分
三、在球面坐标系计算三重积分。
第四节 *第一类曲线积分与曲面积分的计算
一、第一类曲线积分性质与计算
二、第一类曲面积分的性质与计算
第五节 *第二类曲线积分与曲面积分
一、第二类曲线积分的概念、性质与计算
二、第二类曲面积分的概念、性质与计算
第六节 *几种积分间的联系
一、两类曲线积分之间的转化
二、两类曲面积分之间的转化
三、Green公式
四、Gauss公式
五、Stokes公式
第七节 *积分与路径无关的条件
一、平面曲线积分与路径无关的条件
二、二元函数的全微分求积
三、*空间曲线积分与路径无关的条件
第八节 *场论初步
一、场的概念
二、向量场的散度、旋度、通量、环流量
第九节 *多元函数积分学的应用
一、积分的元素法简介
二、质心、转动惯量和引力
【基本要求】
一、熟练掌握二重积分(直角坐标、极坐标)的计算方法,会计算简单的三重积分(直角坐标、柱面坐标、*球面坐标)。
二、了解几何体上的积分的概念、第二类曲线积分和第二类曲面积分的概念;掌握两类曲线积分(对空间曲线的计算只做简单训练)和两类曲面积分的计算方法;掌握Green公式、Gauss公式,并会灵活运用。了解两类曲线积分的性质及其关系、两类曲面积分的性质及其关系;了解第二类平面曲线积分与路径无关的物理意义,了解Stokes公式,了解场的基本概念,了解散度、旋度、通量、环流量的概念及其计算方法;了解科学技术问题中建立重积分与曲线、曲面积分表达式的元素法(微元法),会建立某些简单的几何量和物理量的积分表达式。
【参考学时】 20学时
【参考资料】 李桂范等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第十章 无穷级数
第一节 常数项级数的概念及其基本性质
一、常数项级数的概念
二、常数项级数的基本性质
第二节 常数项级数的审敛法
一、正项级数及其审敛法
二、交错级数及Leibniz(莱布尼兹)定理
三、绝对收敛与条件收敛的概念
四、任意项级数敛散性的判别方法
第三节 函数项级数
一、函数项级数的概念及其基本性质
二、*函数项级数的一致收敛性及其判别法
三、*一致收敛的函数项级数的性质
第四节 幂级数
一、幂级数的概念及基本性质
二、幂级数的收敛域及收敛区间
三、幂级数的运算及和函数的分析性质
四、函数的泰勒级数及泰勒级数展式在近似计算中的应用
五、*Euler公式
第五节 *Fourier(傅里叶)级数
一、三角函数系的正交性及三角级数系
二、周期函数展开成傅里叶级数
三、一般函数展开成傅里叶级数
【基本要求】
一、熟练掌握利用收敛级数的性质判别级数收敛的一些方法;熟练掌握达朗贝尔判别法,能判别级数的绝对收敛和条件收敛;熟练掌握幂级数的收敛区间和收敛半径的求法,能利用间接展开法将初等函数展开成幂级数。
二、理解无穷级数的和与收敛的概念。
三、了解用泰勒级数在近似计算中的应用。
【参考学时】 20学时
【参考资料】 李桂范等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.
第十一章 常微分方程
第一节 微分方程的基本概念
一、微分方程的基本概念
二、微分方程解、通解与特解、初始条件
三、微分方程的几何意义
第二节 可分离变量的一阶微分方程
一、可分离变量的微分方程
二、可化为可分离变量方程的几种类型
第三节 一阶线性微分方程
一、一阶线性微分方程
二、Bernoulli方程
第四节 *全微分方程
一、全微分方程的概念及全微分方程的解法
二、积分因子
第五节 某些高阶微分方程的降阶解法
一、形如的微分方程
二、形如的微分方程
三、形如微分方程
第六节 n阶线性微分方程解的结构
一、函数之间的线性相关与线性无关
二、二阶线性微分方程通解的结构
三、高阶齐次线性微分方程通解的结构
四、*n阶线性微分方程的幂级数解法
第七节 n阶常系数线性微分方程的解法
一、n阶常系数齐次线性微分方程的解法—特征根法
二、n阶常系数非齐次线性微分方程的解─比较系数法
三、Euler方程
第九节 微分方程的应用举例
一、用微分方程解决实际问题的一般步骤
二、微分方程应用举例
【基本要求】
一、熟练掌握变量可分离的方程、齐次方程、一阶线性方程的解法以及二阶常系数齐
次线性微分方程的解法。
二、掌握并理解微分方程的有关概念、二阶线性微分方程解的结构;掌握以及用降阶
法解特殊的高阶微分方程,会求自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解;掌握用微分方程解决一些简单的应用问题的方法。
三、了解全微分方程的解法、某些高于二阶的常系数齐次线性微分方程和Euler方程的解法。
【参考学时】 20学时
【参考资料】 李桂范等编,高等数学[M].哈尔滨: 哈尔滨出版社,2009年.

  考研网快讯,据黑龙江大学研究生院消息,2015年黑龙江大学数学考研参考书目与考试科目已发布,详情如下:

  考试科目名称:数学分析考试科目代码:[720]
  1.《数学分析》第二版(上、下册),陈传璋等,高等教育出版社,1983。
  考试科目名称:高等代数考试科目代码:[820]
  1.曹重光,线性代数,内蒙古科学技术出版社,1999.
  2.北京大学数学系几何与代数教研室前代数小组,高等代数(第三版),高等教育出版社,2003.
  考试科目名称:常微分方程考试科目代码:[066]
  1.《常微分方程》第三版,王高雄等,高等教育出版社,2006。
  2.《常微分方程》第二版,东北师范大学微分方程教研室,高等教育出版社,2006。

  点击【】查看更多参考书目。
【相关阅读】

  友情提示:
  考研信息数量巨大,整理过程中难免出错,欢迎广大研友指正。此外很多历史数据已无处查找,所以为保证考研信息的完整性,考研网真诚欢迎广大研友帮忙补充信息,可回复评论或发送内容至。
  本文系考研网精心整理,转载请注明出处。
黑龙江大学数学科学学院的前身是1958年开始招生的数学系,是黑龙江大学更名时的七个系之一。至今,学院的本科教学、科研工作已有60年的悠久历史。作为黑龙江省省级理科基础科学研究与人才培养基地,数学科学学院具有优良的教风、学风。本科毕业生就业率始终在省内同类专业中名列前茅,在计算机、金融、教师、数据分析师等主要就业行业中,我院毕业生受到工作单位的普遍认可。
黑龙江大学数学科学学院现设有数学与应用数学、信息与计算科学、统计学三个本科专业,数学、统计学两个一级学科硕士科学学位授权点,应用统计硕士专业学位授权点。其中的数学与应用数学专业、信息与计算科学专业为“十二五”黑龙江省普通高等学校重点本科专业。凭借扎实的本科教学和丰富的科研资源不断提升学生的专业素养。该院本科学生多次获得全国数学竞赛和数学建模竞赛一、二等奖,在中俄大学生数学竞赛中,该院学生多次获得大奖,特别是2013年包揽了全部的最高奖项,为黑龙江大学数学科学学院赢得了很高的国际赞誉。
目前学院共有教师73人,其中专任教师66人;教授11人、副教授31人;有博士学位的46人;在国外学习或访问半年以上的19人。“十二五”期间专任教师队伍中有12人(负责人)获国家自然科学基金项目资助,1人入选黑龙江省教育厅新世纪优秀人才支持计划,1人入选黑龙江省普通本科高等学校青年创新人才培养计划,2人入选黑龙江大学学科青年学术骨干百人支持计划。
数学科学学院现拥有黑龙江省复杂系统理论与计算重点实验室,黑龙江大学大型科学计算重点实验室,黑龙江大学复杂系统分析与控制重点实验室。实验室能够进行高速网络互连和资源共享,为广大同学的学习和科技创新活动创造了良好的软硬件平台。
近年来,数学科学学院教师积极开展科学研究工作,主持国家级、省部级科研项目30余项。在数学物理反问题方面的研究成果广泛应用于地质工程、医学、军事、环境、遥测、控制、通讯、气象、经济等领域。同时在基因组计划的DNA分子遗传数据研究方面,利用生物统计学的方法在高血压、糖尿病、肿瘤等许多复杂性疾病的基因定位研究方面取得了好的成果。学院教师还参与开发了国内知名航空票务网站“去哪网”的建设,并保持较好的合作,取得了较好的经济效益。     该院教师在航天器轨道交会优化控制设计和多航天器姿态协调控制理论研究方面的成果得到了业界普遍认可和应用。以上项目的开展开拓了教师和学生的数学视野,同时也扩大了数学科学学院在国内外的学术影响力。
数学科学学院学生本着“踏实攻读、磨砺成才”的信念用汗水浇灌自己无悔的青春,踏实的态度,对学习的执着,展示着数学人的风采。学院为学生设立自习室,组织数学协会、专业教师对学生进行课程辅导,定期开展学习交流会、学风讨论会,保证学生能够在大学期间掌握学习方法和专业知识。在你入学和毕业之际,学院会为你提供职业生涯规划和就业指导的专项课程,保障你的成长,成才。
数学科学学院同时还拥有丰富多彩的学生活动,你是否想来与各个学院的辩论高手一绝高低?你是否想在运动场上尽情的挥洒?你是否想亲自动手装扮自己的寝室,还是想唱歌跳舞展现你的艺术才华?亦或是投身于志愿服务的行列中去!只要你敢想,这里就为你提供最广阔的平台。
黑龙江大学数学科学学院欢迎你!
一、考试要求
数学分析课程的考试目的旨在了解考生对本门课程中的基本概念、方法与理论的掌握程度,为学习相关的专业知识提供必要的理论基础。
    二、试卷结构
1.考试时间:180分钟
2. 试卷分数:150分
3.题型结构:(1)简答题(40分)
            (2)计算与解答题 (60分)
            (3)证明题(50分)
三、考试内容
   第一章 函数、极限与连续
   函数及几何特性、数列与函数的极限、连续函数及其性质、无穷小与无穷大的阶。
   第二章 实数理论
   确界原理、单调有界原理、区间套定理、致密性定理、聚点原理、柯西收敛准则、有限覆盖定理。
   第三章 一元微分学
   导数与微分、高阶导数与微分、中值定理、泰勒公式、单调性与极值、凹凸性与拐点、洛必达法则。
   第四章 一元积分学
   原函数与不定积分、定积分的概念、性质、可积性与计算方法、定积分在几何学中的应用。
   第五章 数项级数
   级数收敛性及其性质、正项级数、绝对收敛与条件收敛。
   第六章 函数项级数
   函数项级数的一致收敛性及性质、幂级数及其收敛域、函数展开成幂级数。
   第七章 广义积分
   无穷限的广义积分、无界函数的广义积分。
   第八章 多元微分学
   偏导数与全微分、方向导数与梯度、极值与条件极值。
   第九章 含参变量的积分
   含参变量的黎曼积分、含参变量的广义积分。
   第十章 多元积分学
   二重(三重)积分的概念、性质及计算、两类曲线(曲面)积分的概念、性质及计算、各类积分之间的联系、曲线积分与路径无关的              
   性质、重积分在几何学中的应用。
四、参考书目
      欧阳光中等. 数学分析(第三版). 高等教育出版社,2008年4月.  一、考试要求
数学分析课程的考试目的旨在了解考生对本门课程中的基本概念、方法与理论的掌握程度,为学习相关的专业知识提供必要的理论基础。
二、考试内容
第一章 函数、极限与连续
函数及几何特性、数列与函数的极限、连续函数及其性质、无穷小与无穷大的阶。
第二章 实数理论
确界原理、单调有界原理、区间套定理、致密性定理、聚点原理、柯西收敛准则、有限覆盖定理。
第三章 一元微分学
导数与微分、高阶导数与微分、中值定理、泰勒公式、单调性与极值、凹凸性与拐点、洛必达法则。
第四章 一元积分学
原函数与不定积分、定积分的概念、性质、可积性与计算方法、定积分在几何学中的应用。
第五章 数项级数
级数收敛性及其性质、正项级数、绝对收敛与条件收敛。
第六章 函数项级数
函数项级数的一致收敛性及性质、幂级数及其收敛域、函数展开成幂级数。
第七章 广义积分
无穷限的广义积分、无界函数的广义积分。
第八章 多元微分学
偏导数与全微分、方向导数与梯度、极值与条件极值。
第九章 含参变量的积分
含参变量的黎曼积分、含参变量的广义积分。
第十章 多元积分学
二重(三重)积分的概念、性质及计算、两类曲线(曲面)积分的概念、性质及计算、各类积分之间的联系、曲线积分与路径无关的性质、重积分在几何学中的应用。
三、试卷结构
1.考试时间:180分钟
2.试卷分值:150分
3.题型结构:(1)简答题(40分)
            (2)计算与解答题 (60分)
            (3)证明题(50分)
四、参考书目
1. 《数学分析》第二版(上、下册),陈传璋等,高等教育出版社, 1983。 先说明下我是18届考生,考研数学121分,考的数学二。自认为依照今年的情况来看,我的数学成绩算不错的。昨天已经确认被录取。
  具体说下考研数学复习时间的全过程和资料选择,当然时间上全靠自己进度掌握,我只是提供一个大概的思路。
  3月——5、6月:
  刚开始复习的时候我认为完全不用看高数同济书,因为书上的内容比较难理解,要理解到位真的需要很好的理解性和跳跃性思维。
  直接看视频。这是最好最快的打基础的方法。视频推荐文都汤家凤的高数基础班强化班。买汤家凤的高数对应讲义和汤家凤1800题。
  我当时是直接看的强化班,因为我认为强化班的知识可以直接用来打基础的。在看的过程中根据章节部分来走,笔记跟上,看完对应的1800题要同步进行,因为一个章节视频也就1到2个小时,剩下的时间你就要跟着好好做题。
  当然,考研派张宇的高数强化班基础班也要看,买张宇18讲,张宇题源1000题。张宇的视频我也是从强化班开始看的。
  当时我的高数时间是这样分配,比如刚开始看到连续与极限章节:老汤对应视频(做笔记)——张宇对应视频(做笔记)——老汤1800——张宇1000;这样一个章节就算结束了,笔记很重要,就跟着老师视频中讲的内容开始记。
  这样下去你的基础会打的特别牢固的。老汤的东西适合打基础,张宇的东西适合提高。所以每一章节看视频的时候必须先看老汤,再看张宇。这样的顺序才正确。
  不管是数学一还是数学二或三,这个方法都是通用的。跟我一块用这种方法复习的小伙伴今年数学也是120+,他是数学一,照样在今年的这种情况下数学取得了不错的成绩。
  6、7月——8、9月:
  不要着急开始看全书,这个时间段,如果你复习的快的话可能我上面讲的你都看完了。如果感觉不是很稳的话,可以再浏览讲义和做题的,记着全程做题的时候别再书上做,自己拿另外的本子做最好,这样你可以以后再过第二遍甚至第三遍。
  9月——10月:
  这个时候就得开全书了。全书我建议新学期开始了就开始看,新学期以前就认认真真把我上面所说的内容搞完,基础打好。
  如果你已经做完我所说的基础内容,那么你后面的学习会很顺利的。
  全书分两种,一种是李永乐王式安红皮的,也是最通用的。一种是李正元粉色版本的。两种都要买,都要看,我是更倾向于第二种的,因为内容东西比较全,如果你时间不是很足的话,可以直接上第二种,第一种买着浏览浏览。我当初是第一种全书过了2遍,第二种过了1遍的。
  先说红色版本吧,红色全书是全面复习的,这时候你数学有基础了,就慢慢自己根绝进度过一遍,认真做题改错,过完第一遍以后做660题,这是蛮经典的题,只有选择填空。
  粉色版本的题是跟全书在一块的,这个是过完一章节,就做题,过完做。扎扎实实把这本书过完,时间也就差不多了。
  全书过完后,我先做了粉色全书对应的400题,然后就可以开真题了。
  真题我用的是张宇的版本,30年的真题,前15年比较简单,一天做2套,规定时间做,尽早进入考试模式,不要不会就去查答案,看了答案有了思路感觉自己这道题就懂了,其实并没有。下次遇到这种题你还是不会。做完一套题对答案纠错,不断重复。
  后15年的就差不多难度加大了。这时候不要急,每天还是规定2个半小时左右做完,要比考试时间少,这样才可以练出来。还是一样认真扎实的做题纠错改正,改正的时候遇到知识点忘记的时候翻笔记,翻全书查阅。
  11月——12月:
  这个时候你真题也差不多做完了,就得做模拟题了。做的套路跟真题是一样的,不过这个你就会感觉到难度。
  说明一下我当时所做的题,学弟学妹们根据自身情况选择:
  粉色全书的400题、李永乐冲刺6+2、张宇8套卷、张宇4套卷、超越数学3套卷。
  另外提醒大家,复习期间视情况对笔记全书反复看、反复过脑子的过程是很重要的!
  如果高数你复习完了的话,现在就得开始复习线代和概率论了。
  线性代数这门课我强烈强烈推荐李永乐的线代辅导讲义和对应视频,还是依照上面的方法,看视频,做辅导讲义和对应题。完全会让你的线代达到拿满分的程度。
  概率论的话我因为是数二没有复习到,所以没有太好的建议。但我小伙伴当时是看的王式安的视频的,当然你也可以看张宇或者汤家凤的。到了这个时候你复习肯定有了自己的思路和规划。完全可以按照自己的水平和思路来。

我校信息与计算科学专业创建于1972年,在全国范围内也是较早建立此专业的院校之一,当时的名称是计算数学专业。直到上个世纪80年代末,随着计算机技术的发展,计算数学日益从早期的以研究基础算法为主向算法的计算机实现过渡,该专业更名为计算数学及其应用软件。自1999年起,根据教育部要求,原有的计算数学及其应用软件专业更名为信息与计算科学专业。信息与计算科学专业于2007年和2011年两次获批为省级重点专业,2011年省重点专业验收中获得优秀结果。本专业培养了一大批优秀的毕业生,如李建中教授、徐国良研究员(入选中科院百人计划)等,为我省及国家的发展作出了贡献。计算数学学科点于2004年取得计算数学硕士点授予权,2007年被评为校重点学科。
本专业现有教师24人,其中教授6人,有博士学位的教师22人,其博士毕业院校来自世界知名高校:英国贝尔法斯特女王大学、日本东京大学、吉林大学、中国科学院、哈尔滨工业大学、大连理工大学、东北大学等。发表的学术论文被国际顶尖SCI期刊SIAM Journal on Numerical Analysis、Inverse Problems、Journal of Mathematical Analysis and Applications、BIT Numerical Mathematics、IEEE Transactions on Neural Networks and Learning Systems、IEEE Transactions on Fuzzy Systems、IEEE-ACM Transactions on Computational Biologyand Bioinformatics、IEEE Transactionson Signal Processing、International Journal of Robust and Nonlinear Control、Journal of Franklin Institute、System Control & Letters、Nonlinear Analysis: Real World Applications、Neurocomputing、Neural Computing& Applications 、IET Control Theory and Applications 等收录。目前,该专业通过多种形式开展与国内外大学及研究机构的科研合作,与之有着学术交流的学校和机构有:美国纽约大学柯朗研究所、美国德州大学奥斯汀分校、加拿大纽芬兰纪念大学、英国格拉摩根大学、日本东京大学、香港浸会大学、中科院、北京计算科学研究中心、北京大学、浙江大学、吉林大学、大连理工大学、东北大学、哈尔滨工业大学等。
该专业现有计算数学和运筹学与控制论两个教研室。
培养目标:基于“厚基础、重创新、强能力”的专业特色,培养具有良好数学基础和数学思维能力,掌握信息与计算科学专业的基本理论和基本方法,具备运用所学的数学知识和熟练的计算机技能解决实际问题的能力。综合素质高,适应经济社会需要,能在科技、教育、信息产业等部门从事研究、教学、应用开发和管理工作的复合型高级专门人才。
专业基础课:数学分析、高等代数、解析几何、大学物理、常微分方程、概率论与数理统计、复变函数、实变函数与泛函分析、数学建模、高级语言程序设计;
计算数学模块课程:数据结构、数学物理方程、数值代数、数值逼近等;
控制模块课程:矩阵分析、现代控制理论基础、自动控制原理、控制系统仿真等。
就业方向:在大中专院校、中小学或科研单位从事教学和科研工作,或在信息产业、政府管理机构、国防、经济领域等从事应用研究和计算机软件开发及应用工作。可以继续攻读本专业及相关专业的硕士学位研究生。
教师:
计算数学教研室 (13人)(按姓氏拼音排序):
冯立新、贺英、蒋鲲、李文婷、李媛、梁慧、孙洪全、王红艳、王静、姚明臣、张法勇、张磊、张天纲
运筹学与控制论教研室(11人) (按姓氏拼音排序):
高翔宇、巩诚、李彦江、吕建婷、马静、王鑫、王艳涛、薛雨、杨新荣、张国栋、张显
数学 [070100] 学术学位

专业信息

所属院校:黑龙江大学
招生年份:2020年
招生类别:全日制研究生
所属学院:数学科学学院
所属门类代码、名称:[07]理学
所属一级学科代码、名称:[01]数学

专业招生详情

研究方向: (1)微分方程数值解法
(2)微分方程及数学生物学
(3)生物系统分析与综合
(4)代数学
(5)数学物理反问题
(6)控制理论与应用
(7)数学机械化
(8)密码学
招生人数: 27
考试科目: ①101 思想政治理论
②201 英语一或 202 俄语或 203 日语
③720 数学分析
④820 高等代数
备  注:
参考书目
      欧阳光中等. 数学分析(第三版). 高等教育出版社,2008年4月.

基本信息

专业名称:数学     专业代码:070100     门类/类别:理学     学科/类别:数学

专业介绍

陆军装甲兵学院为例
一、培养目标
培养政治合格、军事过硬、作风优良、纪律严明,掌握数学学科较坚实宽广的基础理论和较系统深入的专门知识;熟悉数学学科有关领域的前沿动态,掌握必要的相关学科知识,具有从事科学研究和解决本专业领域技术难题的能力,能够适应军队现代化建设和信息化条件下联合作战需要和基层部队任职岗位需求的高层次应用型人才。
二、专业简介
数学学科于1998年开始挂靠计算机科学与技术专业招收研究生,2005年获得应用数学二级学科授予权,形成了具有军事装备科学与技术应用背景的应用数学研究重点领域。2011年获得一级硕士学位授予权。目前共培养了23名硕士研究生,其中1名研究生的论文被评为全军、总装备部优秀硕士学位论文,1名研究生的论文被评为学院优秀硕士学位论文。    
三、研究方向简介
(1)微分几何及其应用
重点研究微分流形的解析结构和这种结构所蕴含的几何现象,以及辛几何与李群理论在动力学系统中的数值计算方法。本方向主要开展如下研究内容:子流形的几何学、动力学系统的几何积分方法、军事科学中微分动力学模型研究。
(2)分形计算方法及其在信息综合处理中的应用
重点研究信息安全领域的前沿课题,在军事信息综合处理方面有着广泛的应用价值。本方向主要开展如下领域的研究工作:分形计算方法研究、分形几何在数字图像处理中的应用、分形在信息综合处理中的应用。
(3)随机分析及统计应用研究
重点研究武器装备科学实验过程中的各类型试验数据统计规律等相关问题,为军事装备科研领域的定量分析研究提供科学依据。本方向重点关注的研究领域包括:随机分析理论及其在军事科学技术中的应用研究、统计分析与计算、可靠性统计理论及应用研究。
(4)非线性分析理论方法及应用
重点研究运用非线性分析的理论、方法对军事科学技术研究领域中的若干非线性科学问题进行数学建模、模拟仿真,对军事复杂系统的非线性现象的内在本质、控制策略进行定量分析。本方向重点关注如下问题的研究:军事复杂系统建模与辨识的理论与方法研究、非线性混沌系统的脉冲控制及其在安全保密通讯中的应用研究。
(5)数学物理反演方法及其应用
重点研究数学物理反问题的理论研究和实际应用两个方面。本方向重点关注如下研究领域:数学物理反演方法研究、非均匀介质中波动信号的数值模拟仿真技术研究、微观物质的数值模拟与建模。
(6)非线性动力系统稳定性分析及建模仿真
重点研究军事装备科学与技术应用背景下,涉及运筹学、控制论及计算机仿真模拟等领域的相关问题。本方向重点关注如下研究领域:非线性动力系统的稳定性分析研究、非线性动力系统的建模与仿真研究。
四、导师队伍
本学科有教授8名,副教授12名,有总装备部“1153人才工程”第一层次培养对象1名,第二层次培养对象2名,分别有1人次获得总参优秀教员、全军优秀教员、总装教育教学先进个人、总装军事训练先进个人、军队院校育才奖“金奖”、优秀研究生指导教师等荣誉称号,6人次获得军队院校育才奖“银奖”,1人获得军队优秀人才岗位一类津贴。
五、教学科研条件
拥有复杂系统建模实验室,该实验室位于基础部办公楼,占地面积150平方米,于2006年开始建设并投入使用。总建设经费100万元。实验室主要承担数学专业研究生进行数据处理与复杂系统建模。           
六、教学科研学术成果
本学科先后获得军队教学成果二等奖1项,军队科技进步奖三等1项,总装备部优质课1门,在国内外相关学术期刊发表论文520余篇,有70余篇学术论文被SCI、EI检索收录,其研究成果受到国内外的关注,并与国内外一些高等学校和科研院所建立了广泛的学术联系。

专业点分布

陆军装甲兵学院 北京化工大学 清华大学 北京工业大学 北京航空航天大学 北京理工大学 北方工业大学 北京邮电大学 中国农业大学 北京信息科技大学 中国民航大学 河北工业大学 华北理工大学 河北科技大学 中央司法警官学院 中北大学 太原科技大学 山西师范大学 太原师范学院 内蒙古大学 大连海事大学 沈阳航空航天大学 大连交通大学 长春理工大学 北华大学 东北电力大学 哈尔滨理工大学 上海交通大学 华东理工大学 河海大学 南京信息工程大学 江苏大学 浙江理工大学 浙江工业大学 杭州电子科技大学 温州大学 浙江海洋大学 绍兴文理学院 淮北师范大学 安徽师范大学 合肥工业大学 安徽理工大学 华侨大学 东华理工大学 华东交通大学 江西科技师范大学 烟台大学 山东理工大学 曲阜师范大学 鲁东大学 齐鲁工业大学 中国石油大学(华东) 河南理工大学 河南师范大学 武汉科技大学 三峡大学 湖南科技大学 湖南大学 湖南工业大学 国防科技大学 吉首大学 湘潭大学 湖南理工学院 南方科技大学 广东工业大学 中山大学 深圳大学 桂林电子科技大学 海南师范大学 重庆邮电大学 四川理工学院 贵州大学 空军工程大学 西安电子科技大学 西安建筑科技大学 延安大学 青海民族大学 宁夏大学 新疆大学

专业院校排名

0701 数学
本一级学科中,全国具有“博士授权”的高校共 76 所,本次参评69 所;部分具有“硕士授权”的高校 也参加了评估;参评高校共计 182 所(注:评估结果相同的高校排序不分先后,按学校代码排列)
序号 学校代码 学校名称 评选结果
1 10001 北京大学 A+
2 10246 复旦大学 A+
3 10422 山东大学 A+
4 10003 清华大学 A
5 10027 北京师范大学 A
6 10055 南开大学 A
7 10248 上海交通大学 A
8 10358 中国科学技术大学 A
9 10698 西安交通大学 A
10 10183 吉林大学 A-
11 10213 哈尔滨工业大学 A-
12 10247 同济大学 A-
13 10269 华东师范大学 A-
14 10284 南京大学 A-
15 10335 浙江大学 A-
16 10486 武汉大学 A-
17 10558 中山大学 A-
18 10610 四川大学 A-
19 10028 首都师范大学 B+
20 10141 大连理工大学 B+
21 10200 东北师范大学 B+
22 10280 上海大学 B+
23 10285 苏州大学 B+
24 10319 南京师范大学 B+
25 10345 浙江师范大学 B+
26 10384 厦门大学 B+
27 10487 华中科技大学 B+
28 10511 华中师范大学 B+
29 10530 湘潭大学 B+
30 10532 湖南大学 B+
31 10533 中南大学 B+
32 10542 湖南师范大学 B+
33 10561 华南理工大学 B+
34 10574 华南师范大学 B+
35 10611 重庆大学 B+
36 10718 陕西师范大学 B+
37 10730 兰州大学 B+
38 90002 国防科技大学 B+
39 10002 中国人民大学 B
40 10005 北京工业大学 B
41 10094 河北师范大学 B
42 10270 上海师范大学 B
43 10290 中国矿业大学 B
44 10357 安徽大学 B
45 10386 福州大学 B
46 10394 福建师范大学 B
47 10459 郑州大学 B
48 10635 西南大学 B
49 10673 云南大学 B
50 10697 西北大学 B
51 10699 西北工业大学 B
52 10736 西北师范大学 B
53 10755 新疆大学 B
54 11078 广州大学 B
55 10004 北京交通大学 B-
56 10008 北京科技大学 B-
57 10108 山西大学 B-
58 10126 内蒙古大学 B-
59 10251 华东理工大学 B-
60 10287 南京航空航天大学 B-
61 10288 南京理工大学 B-
62 10300 南京信息工程大学 B-
63 10320 江苏师范大学 B-
64 10359 合肥工业大学 B-
65 10414 江西师范大学 B-
66 10445 山东师范大学 B-
67 10446 曲阜师范大学 B-
68 10512 湖北大学 B-
69 10636 四川师范大学 B-
70 10637 重庆师范大学 B-
71 10657 贵州大学 B-
72 11117 扬州大学 B-
73 11646 宁波大学 B-
74 10009 北方工业大学 C+
75 10145 东北大学 C+
76 10165 辽宁师范大学 C+
77 10255 东华大学 C+
78 10299 江苏大学 C+
79 10338 浙江理工大学 C+
80 10346 杭州师范大学 C+
81 10351 温州大学 C+
82 10403 南昌大学 C+
83 10423 中国海洋大学 C+
84 10475 河南大学 C+
85 10476 河南师范大学 C+
86 10559 暨南大学 C+
87 10560 汕头大学 C+
88 10593 广西大学 C+
89 10663 贵州师范大学 C+
90 10749 宁夏大学 C+
91 11414 中国石油大学 C+
92 10019 中国农业大学 C
93 10079 华北电力大学 C
94 10081 华北理工大学 C
95 10110 中北大学 C
96 10203 吉林师范大学 C
97 10214 哈尔滨理工大学 C
98 10231 哈尔滨师范大学 C
99 10252 上海理工大学 C
100 10337 浙江工业大学 C
101 10370 安徽师范大学 C
102 10491 中国地质大学 C
103 10536 长沙理工大学 C
104 10595 桂林电子科技大学 C
105 10613 西南交通大学 C
106 10616 成都理工大学 C
107 10681 云南师范大学 C
108 11066 烟台大学 C
109 90006 解放军理工大学 C
110 10078 华北水利水电大学 C-
111 10118 山西师范大学 C-
112 10140 辽宁大学 C-
113 10166 沈阳师范大学 C-
114 10167 渤海大学 C-
115 10212 黑龙江大学 C-
116 10294 河海大学 C-
117 10390 集美大学 C-
118 10460 河南理工大学 C-
119 10477 信阳师范学院 C-
120 10513 湖北师范大学 C-
121 10608 广西民族大学 C-
122 10615 西南石油大学 C-
123 10638 西华师范大学 C-
124 10674 昆明理工大学 C-
125 11065 青岛大学 C-
126 10010 北京化工大学 C-
127 10059 中国民航大学 C-
128 10065 天津师范大学 C-
129 10075 河北大学 C-

0701J3数学

基本信息

专业名称:数学     专业代码:0701J3     门类/类别:理学     学科/类别:数学

专业介绍

北京大学为例
据北京大学研究生院消息,2017年北京大学0701J3数据科学(数学)考研专业目录及考试科目已经公布,详情如下:
招生院系: 前沿交叉学科研究院
计划招生数 123
拟接收推免人数 80
备注说明 拟招收博士研究生123人(其中包括:生命科学联合中心拟招收80人,生物与医药工程博士拟招收5人), 另与国家纳米中心联合培养名额单列。
其中直博生和本校硕博连读生占75%左右, 其余采用“申请-考核制”招生。
本学院除生物与医药工程博士的学习方式为非全日制,其他专业的学习方式均为全日制。
招生专业:数据科学(数学)(0701J3)
计划招生数:   拟接收推免人数:  
备注:  
研究方向 考试科目

专业院校排名

0701 数学
本一级学科中,全国具有“博士授权”的高校共 76 所,本次参评69 所;部分具有“硕士授权”的高校 也参加了评估;参评高校共计 182 所(注:评估结果相同的高校排序不分先后,按学校代码排列)
序号 学校代码 学校名称 评选结果
1 10001 北京大学 A+
2 10246 复旦大学 A+
3 10422 山东大学 A+
4 10003 清华大学 A
5 10027 北京师范大学 A
6 10055 南开大学 A
7 10248 上海交通大学 A
8 10358 中国科学技术大学 A
9 10698 西安交通大学 A
10 10183 吉林大学 A-
11 10213 哈尔滨工业大学 A-
12 10247 同济大学 A-
13 10269 华东师范大学 A-
14 10284 南京大学 A-
15 10335 浙江大学 A-
16 10486 武汉大学 A-
17 10558 中山大学 A-
18 10610 四川大学 A-
19 10028 首都师范大学 B+
20 10141 大连理工大学 B+
21 10200 东北师范大学 B+
22 10280 上海大学 B+
23 10285 苏州大学 B+
24 10319 南京师范大学 B+
25 10345 浙江师范大学 B+
26 10384 厦门大学 B+
27 10487 华中科技大学 B+
28 10511 华中师范大学 B+
29 10530 湘潭大学 B+
30 10532 湖南大学 B+
31 10533 中南大学 B+
32 10542 湖南师范大学 B+
33 10561 华南理工大学 B+
34 10574 华南师范大学 B+
35 10611 重庆大学 B+
36 10718 陕西师范大学 B+
37 10730 兰州大学 B+
38 90002 国防科技大学 B+
39 10002 中国人民大学 B
40 10005 北京工业大学 B
41 10094 河北师范大学 B
42 10270 上海师范大学 B
43 10290 中国矿业大学 B
44 10357 安徽大学 B
45 10386 福州大学 B
46 10394 福建师范大学 B
47 10459 郑州大学 B
48 10635 西南大学 B
49 10673 云南大学 B
50 10697 西北大学 B
51 10699 西北工业大学 B
52 10736 西北师范大学 B
53 10755 新疆大学 B
54 11078 广州大学 B
55 10004 北京交通大学 B-
56 10008 北京科技大学 B-
57 10108 山西大学 B-
58 10126 内蒙古大学 B-
59 10251 华东理工大学 B-
60 10287 南京航空航天大学 B-
61 10288 南京理工大学 B-
62 10300 南京信息工程大学 B-
63 10320 江苏师范大学 B-
64 10359 合肥工业大学 B-
65 10414 江西师范大学 B-
66 10445 山东师范大学 B-
67 10446 曲阜师范大学 B-
68 10512 湖北大学 B-
69 10636 四川师范大学 B-
70 10637 重庆师范大学 B-
71 10657 贵州大学 B-
72 11117 扬州大学 B-
73 11646 宁波大学 B-
74 10009 北方工业大学 C+
75 10145 东北大学 C+
76 10165 辽宁师范大学 C+
77 10255 东华大学 C+
78 10299 江苏大学 C+
79 10338 浙江理工大学 C+
80 10346 杭州师范大学 C+
81 10351 温州大学 C+
82 10403 南昌大学 C+
83 10423 中国海洋大学 C+
84 10475 河南大学 C+
85 10476 河南师范大学 C+
86 10559 暨南大学 C+
87 10560 汕头大学 C+
88 10593 广西大学 C+
89 10663 贵州师范大学 C+
90 10749 宁夏大学 C+
91 11414 中国石油大学 C+
92 10019 中国农业大学 C
93 10079 华北电力大学 C
94 10081 华北理工大学 C
95 10110 中北大学 C
96 10203 吉林师范大学 C
97 10214 哈尔滨理工大学 C
98 10231 哈尔滨师范大学 C
99 10252 上海理工大学 C
100 10337 浙江工业大学 C
101 10370 安徽师范大学 C
102 10491 中国地质大学 C
103 10536 长沙理工大学 C
104 10595 桂林电子科技大学 C
105 10613 西南交通大学 C
106 10616 成都理工大学 C
107 10681 云南师范大学 C
108 11066 烟台大学 C
109 90006 解放军理工大学 C
110 10078 华北水利水电大学 C-
111 10118 山西师范大学 C-
112 10140 辽宁大学 C-
113 10166 沈阳师范大学 C-
114 10167 渤海大学 C-
115 10212 黑龙江大学 C-
116 10294 河海大学 C-
117 10390 集美大学 C-
118 10460 河南理工大学 C-
119 10477 信阳师范学院 C-
120 10513 湖北师范大学 C-
121 10608 广西民族大学 C-
122 10615 西南石油大学 C-
123 10638 西华师范大学 C-
124 10674 昆明理工大学 C-
125 11065 青岛大学 C-
126 10010 北京化工大学 C-
127 10059 中国民航大学 C-
128 10065 天津师范大学 C-
129 10075 河北大学 C-

数学研究生考试科目:
教材方面:
①《高等数学》(上、下):高等教育出版社第6版同济大学数学系
②《工程数学线性代数》(第五版)同济大学数学系
高等教育出版社
③《概率论与数理统计》:高等教育出版社浙大第4版盛骤
(二)教材辅导书:
①同济大学数学系:高等数学习题全解指南(上下册)高等教育出版社
②工程数学线性代数(第五版)同济大学数学系
高等教育出版社辅导书
③概率论与数理统计:高等教育出版社浙大第4版盛骤
辅导书
(三)复习用书
①李永乐:《2014年数学复习全书》中国政法大学出版社
李永乐:《2014数学历年试题解析》中国政法大学出版社
②李永乐:《基础660》西安交通大学出版社
③2014教育部考试中心的《考试分析》高等教育出版社
④2014教育部考试中心的《大纲解析》高等教育出版社
⑤李永乐、李正元:《超越135分》和《最后五套卷》
 
数学考研参考书:
下面,本文先从当前的考纲入手,来有针对性地进行分析和指导。事实上,数学科目(学硕)的考试,在考试内容和分值分配上,可作如下分类:
卷种  考试内容 数学(一) 数学(二) 数学(三)
高等数学  (微积分) 82(分) 116(分) 82(分)
线性代数 34(分) 34(分) 34(分)
概率论与  数理统计 34(分) —— 34(分)
总分 150(分) 150(分) 150(分)
  由上述表格不难看出,无论是哪类数学,高等数学都占了相当大的比重,其次是线性代数和概率论与数理统计。这其中,对于相应科目参考书的选择,可参见以下表格:
  数学(一) 数学(二) 数学(三)
高等数学 《高等数学》第六版(上下两册),同济大学数学系编,高等教育出版社。
线性代数 《工程数学—线性代数》第五版,同济大学数学系编,高等教育出版社。
概率论与数理统计 《概率论与数理统计》第四版,浙江大学 盛骤、谢千式、潘承毅编,高等教育出版社。
 
 

数学专业研究生就业:
中国科学院、中国工程院院士王选教授在北大方正软件技术学院开学典礼上寄语大学生要成为一个合格的软件人才,需要有扎实的数学功底,严密的逻辑思维能力。而严密的逻辑思维能力,来自于深厚扎实的数学功底。可见数学与应用数学专业是从事其他相关专业的基础。随着科技事业的发展和普及,数学专业与其他相关专业的联系将会更加紧密,数学专业知识将会得到更广泛的应用。
随着教育人事制度的改革和教师聘任制的全面推行,普通中学师资的来源正在打破行业地域界线。由师范院校培养输出教师的传统模式已经不能适应现代教育对复合型人才的需求。综合院校在培养复合型人才方面有着德天独厚的学科资源优势。报考综合院校的数学与应用数学专业,不仅有利于未来择业,也有利于个人发展成才。
家教业的逐渐兴起,也为数学与应用数学专业毕业生提供了一条重要的就业渠道。由于数学家教对专业知识和教学辅导艺术的要求比较高,家长不易操作或无暇顾及,于是聘请数学家教已成为许多家庭的必然选择。在未来5~8年以后,数学家教将会成为一种专门的职业而广受欢迎。把家教作为一种职业,也必定会大有文章可做。
数学与应用数学是计算机专业的基础和上升的平台,是与计算机科学与技术联系最为紧密的专业之一。该专业属于基础型专业,就业面较宽,不过考研仍然是该专业毕业生的首选。在日常生活中,从天气预报到股票涨落,到处充斥着数学的描述和分析方法。北京市需求毕业生人数最多的十大专业中,数学与应用数学专业需求量位居前列。可见,数学人才的需求量较大,就业前景看好。而且可以预见,随着经济和社会的发展,市场对数学与应用数学专业人才的需求将会越来越多,其就业前景比较广阔。
另外,金融数学家已经是华尔街最抢手的人才之一。在保险公司中地位和收入最高的,可能就是总精算师。在美国,芝加哥大学、加州伯克利大学、斯坦福大学、卡内基·梅隆大学和纽约大学等著名学府,都已经设立了金融数学相关的学位或专业证书教育。尽管如此,在美国很吃香的保险精算师,很多都是数学专业出身。美国花旗银行副主席保尔·柯斯林也曾说过说:一个从事银行业务而不懂数学的人,无非只能做些无关紧要的小事。除了保险精算师以外,由于经济学也引入了数学建模,因此懂经济原理的数学人才也被用人单位广泛接纳,还有国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。
由于数学与应用数学专业与其他相关专业联系紧密,以它为依托的相近专业可供选择的比较多,因而报考该专业较之其他专业回旋余地大,重新择业改行也容易得多,有利于将来更好的就业。
通过以上了解,我们可以看到数学专业在未来就业市场上确实有很大的优势,我们选择了数学专业,就要有进一步深造的计划,先打好了本科阶段的数学基础,再从其他方向寻求发展,就会更容易突破。
数学考试科目
政治,英语,数学分析,高等数学,这四个一般是初试必考的。至于复试就每个学校都不太一致了,不过一般都是考微分方程与复变函数。

数学专业研究生分好几个方向,有应用数学、计算数学以及概率论与数理统计等,一般数分高代是基础一定会考,有的学校是两门专业课就是数分与高代,也有的学校是数分高代合并算一门专业课,然后再考其他一门专业课,例如概率论方向有可能会考概率或统计学。

数学参考书目
1、教材比较推荐的有:

  高数教材:《高等数学》——同济版;

  线代教材:《线性代数》——同济版、清华版;

  概率教材:《概率论与数理统计》——浙江大学盛骤版

  2、复习全书推荐的有:

  《数学复习全书》——李永乐;

  《线性代数辅导讲义》——李永乐;

  《高数18讲》——张宇

  3、真题、习题类推荐的依次有:

  《数学历年真题解析》——李永乐;

  《数学基础过关660题》——李永乐;

  《全真模拟经典400题》——李永乐;

  《接力题典1800题》——汤家凤

数学考研方向
以复旦大学为例
专业代码、名称及研究方向 学习方式 人数 考试科目 备注
018 数学科学学院   93   本院系拟招收学术学位推免生32人, 拟招收专业学位推免生51人。实际招生数视生源情况调整。
025100 金融(专业学位)   35   本专业拟招收推免生34人。
01金融工程与管理
02风险管理与保险精算
13随机金融与风险分析
14金融衍生品的定价与计算
全日制   ①101思想政治理论;②204英语二;③303数学三;④431金融学综合
025200 应用统计(专业学位)   18   本专业拟招收推免生17人。
01高维数据分析
02散乱数据拟合
03统计计算方法
全日制   ①101思想政治理论;②204英语二;③303数学三;④432统计学
070101 基础数学(学术学位)   14   分析包括数学分析60%及常微分方程20%、复变函数20%、实变函数20%,其中后三部分任选两部分;代数与几何包括高等代数70%及抽象代数(群、环、域)30%、微分几何30%,其中后两部分任选一部分。本专业拟招收推免生11人。
01微分几何
02数学物理
03偏微分方程
04泛函分析
05代数学
06代数几何
07复变函数论
08动力系统
09数论
10拓扑学
11调和分析
全日制   ①101思想政治理论;②201英语一;③719分析;④835代数与几何
070102 计算数学(学术学位)   6   本专业拟招收推免生5人。
01数值线性代数
02新型算法
03偏微分方程数值解
04并行算法
05数学物理反问题
全日制   ①101思想政治理论;②201英语一;③719分析;④835代数与几何
070103 概率论与数理统计(学术学位)   3   本专业拟招收推免生2人。
01随机过程
02随机分析及其应用
全日制   ①101思想政治理论;②201英语一;③719分析;④835代数与几何
070104 应用数学(学术学位)   12   本专业拟招收推免生10人。
01计算几何
02应用偏微分方程
03工业应用数学
04神经网络的数学方法与应用
05非线性科学
06精算学
07计算系统生物学
全日制   ①101思想政治理论;②201英语一(或)241法语;③719分析;④835代数与几何
070105 运筹学与控制论(学术学位)   5   本专业拟招收推免生4人。
01最优控制理论及其应用
02随机控制理论与数学金融
全日制   ①101思想政治理论;②201英语一;③719分析;④835代数与几何


数学就业前景
数学与应用数学专业就业前景很好,毕业生主要在教育类企业、金融类企业从事数学教师、数学教研、教学产品研发、精算师、证券分析、金融研究等。
就业前景

应用数学专业属于基础专业,是其他相关专业的“母专业”。无论是进行科研数据分析、软件开发、三维动画制作还是从事金融保险,国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识,数学专业与其他相关专业的联系将会更加紧密,数学专业知识将会得到更广泛的应用。

由于数学与应用数学专业与其他相关专业联系紧密,以它为依托的相近专业可供选择的比较多,因而报考该专业较之其他专业回旋余地大,重新择业改行也容易得多,有利于将来更好的就业。

家教业的逐渐兴起,也为数学与应用数学专业毕业生提供了一条重要的就业渠道。由于数学家教对专业知识和教学辅导艺术的要求比较高,家长不易操作或无暇顾及,于是聘请数学家教已成为许多家庭的必然选择。

数学与应用数学专业毕业生主要到科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作。能胜任高等院校、科研院所、企业和其他单位的教学、科研技术和技术管理工作。