厦门大学数学科学学院导师:张中新

发布时间:2021-10-09 编辑:考研派小莉 推荐访问:
厦门大学数学科学学院导师:张中新

厦门大学数学科学学院导师:张中新内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)

厦门大学数学科学学院导师:张中新 正文

  姓名:张中新  
  性别:男  
  职称:教授
  所获学位:博士 
  学院:数学学院
  研究方向:边界层理论及非线性分析
  Email: lumengzh@xmu.edu.cn
  Tel: 0592-2580731
  0592-5927331
  13123376458

  个人简介
  1971年出生于辽宁。
  1992年在吉林大学数学系获得学士学位,
  1995年在吉林大学数学研究所获得硕士学位,
  2001年在吉林大学数学研究所获得博士学位。
  1995年7月至2002年7月在吉林大学数学系工作,
  2002年7月至今在厦门大学数学科学学院工作。
  2008年晋升为教授。

     主要研究领域
  从事方向为应用数学研究,主要包括流体力学中的数学问题及其数学理论,边界层问题的相似解模型的建立及其理论研究, 常微分方程边值问题,常微分方程渐近分析和边界层问题的数学理论等, 为相关研究领域提供了一些开创性的数学新方法和研究思路, 这些方法和思路可能会成为未来研究相关问题重要的数学手段。取得成果得到国际上流体力学和数学领域专家的重视。
  曾主持完成国家自然科学基金青年科学基金课题一项(批准号:10501037, 2006.01-2008.12)。福建省自然科学基金课题一项。

  科研成果
  近年来在国内外重要刊物上发表论文20余篇,其中绝大部分发表在国外SCI数学杂志上。近年来发表的一些科研成果:
  1. Concave solutions of a general similarity boundary layer equation for power-law fluids, submitted to ZAMP,
  2.Convex solutions of a general similarity boundary layer equation for power-law fluids,J. Math.Anal. Appl,(2009), doi:10.1016/j.jmaa.2009.09.010。
  3.Self-similar solutions of the magnetohydrodynamic boundary layer system for a non-dilatable fluid, ZAMP,60(2009),621-639。
  4. On the similarity solutions of agnetohydrodynamic flows of power-law fluids over a stretching sheet, J. Math.Anal. Appl., 2007, vol. 330(1), 207-220.
  5. Self-similar solutions of the magnetohydrodynamic boundary layer system for a dilatable fluid, Acta Mechanica, 2007, vol. 188(1-2), 103-119.
  6. Exact self-similar solutions of the magnetohydrodynamic boundary layer system for power-law fluids, Z. angew. Math. Phys., vol. 58(5), 805-817, 2007. 7.
  7. Semilinear elliptic boundary value problems on bounded multiconnected domains, Electronic J. Differential Eqution, 2005, vol. 7, 1-11
  8. A boundary layer problem arising in gravity-driven laminar film flow of power-lawer fluids along vertical walls, Z. angew. Math. Phys., 2004, vol. 55, 769-780.
  9.. On existence and multiplicity of positive solutions to singular multi-point boundary value problem, J. Math. Anal. Appl., 2004, vol. 295, 502-512.
  10.On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations, J. Math. Anal. Appl., 2003, vol. 281, 99-107.
  11. Positive Solutions to a Second Order Three-Point Boundary Value Problem, J. Math. Anal. Appl., 2003, vol. 285, 237--249.
  12. The upper and lower solution method for a class of singular nonlinear second order three-order boundary value problems, J. Comp. Appl. Math. 2002, vol. 147, 41—52.

  如果发现导师信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。



 

以上老师的信息来源于学校网站,如有更新或错误,请联系我们进行更新或删除,联系方式

添加厦门大学学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[厦门大学考研分数线、厦门大学报录比、厦门大学考研群、厦门大学学姐微信、厦门大学考研真题、厦门大学专业目录、厦门大学排名、厦门大学保研、厦门大学公众号、厦门大学研究生招生)]即可在手机上查看相对应厦门大学考研信息或资源

厦门大学考研公众号 考研派小站公众号
厦门大学

本文来源:http://www.okaoyan.com/xiamendaxue/daoshi_495726.html

推荐阅读