温馨提示:资料后续如有更新,将免费赠送。若有疑问,请加下列学姐微信进行咨询,还会有考研资源赠送哦
南京师范大学 学姐微信
为你免费答疑
为你免费答疑
2017李永乐·王式安唯一考研数学基础过关火热 出售 了,考研的小伙伴还在犹豫什么呢?
【作者介绍】:
李永乐,清华大学应用数学系教授,北京高教学会数学研究会副理事长。全国著名的考研数学线性代数辅导专家,多次参加考研数学大纲修订和全国性数学考试命题工作。
王式安,1987-2001年间担任全国研究生入学考试数学命题组组长,教育部考研数学命题组资深专家。原北京理工大学研究生院院长、应用数学系系主任、教授,享受国务院特殊津贴,王式安学专家,是美国哥伦比亚、南佛罗里达、纽约等大学的客座教授。凭着王老师多年参加考研数学命题工作的经验,使他对考研数学的命题思路和命题方向了如指掌。
季文铎,全国研究生入学考试数学试卷命题组组长,北京交通大学教授(享受国家津贴),国家教学成果奖获得者。季文铎教授自1989年以来至今一直致力研究生入学考试数学科目的命题工作,常年担任该命题组组长、阅卷组组长,对硕士研究生入学考试命题有着精准的把握及深刻的洞察;长期承担大学生数学竞赛、数学建模竞赛及大学基础数学的教学和理论研究工作。翻译并引进多部外国优秀教材,编著出版多部著作,多次在国家和省级报刊上发表学术论文。
【2017李永乐·王式安唯一考研数学复习全书数学二内容】
1.考点与要求设置本部分的目的是使考生明白考试内容和考试要求,从而在复习时有明确的目标和重点
2.内容精讲本部分对考试大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析。
2.内容精讲本部分对考试大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析。
3.例题分析本部分对历年考题所涉及的题型进行归纳分类,总结各种题型的解题方法,注重对所学知识的应用,以便能够开阔考生的解题思路,使所学知识融会贯通,并能建议考生在使用本书时不要就题论题,而是要多动脑,通过对题目的练习、比较、思考,总结并发现题目设置和解答的规律性,真正掌握应试解题的金钥匙,从而迅速提高知识水平和应试能力,取得理想分数。
4.习题分阶只有适量的练习才能巩固所学的知识,数学复习离不开做题。为了使考生更好地巩固所学知识,提高实际解题能力,本书作者精心优化设计了一定数量的练习题,供考生练习,以便使考生在熟练掌握基本知识的基础上,达到轻松解答真题的水平。同时,本书对精选的练习题,进行了难度分阶,从基础概念,到综合应用,层层递进,实现练习、巩固、提高三维一体。
4.习题分阶只有适量的练习才能巩固所学的知识,数学复习离不开做题。为了使考生更好地巩固所学知识,提高实际解题能力,本书作者精心优化设计了一定数量的练习题,供考生练习,以便使考生在熟练掌握基本知识的基础上,达到轻松解答真题的水平。同时,本书对精选的练习题,进行了难度分阶,从基础概念,到综合应用,层层递进,实现练习、巩固、提高三维一体。
【2017李永乐·王式安唯一考研数学复习全书数学二目录】
第一篇 高等数学
第一章 函数极限连续
考点与要求
1函数
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、求分段函数的复合函数
二、由函数的奇偶性与周期性构造函数
三、求反函数的表达式
四、关于函数有界(无界)的讨论
2极限
内容精讲
一、定义
二、重要性质、定理、公式
三、计算极限的一些有关方法
例题分析
一、求函数的极限
二、已知极限值求其中的某些参数,或已知极限求另一与此有关的某极限
三、含有|x|,e1x的x→0时的极限,含有取整函数[x]的x趋于整数时的极限
四、无穷小的比较
五、数列的极限
六、极限运算定理的正确运用
3函数的连续与间断
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、讨论函数的连续与间断
二、在连续条件下求参数
三、连续函数的零点问题
第二章 一元函数微分学
考点与要求
1导数与微分,导数的计算
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、按定义求一点处的导数
二、已知f(x)在某点x=x0处可导,求与此有关的某极限或其中某参数,或已知某极限求f(x)在x=x0处的导数
三、绝对值函数的导数
四、由极限式表示的函数的可导性
五、导数与微分、增量的关系
六、求导数的计算题
2导数的应用
内容精讲
一、定义
二、重要性质、定理、公式与方法
例题分析
一、增减性、极值、凹凸性、拐点的讨论
二、渐近线
三、曲率与曲率圆
四、最大值、最小值问题
3中值定理、不等式与零点问题
内容精讲
一、重要定理
二、重要方法
例题分析
一、不等式的证明
二、f(x)的零点与f′(x)的零点问题
三、复合函数ψ(x,f(x),f′(x))的零点
四、复合函数ψ(x,f(x),f′(x),f″(x))的零点
五、“双中值”问题
六、零点的个数问题
七、证明存在某ξ满足某不等式
八、利用中值定理求极限、f′(x)与f(x)的极限关系
第三章 一元函数积分学
考点与要求
1不定积分与定积分的概念、性质、理论
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、分段函数的不定积分与定积分
二、定积分与原函数的存在性
三、奇、偶函数、周期函数的原函数及变限积分
2不定积分与定积分的计算
内容精讲
一、基本积分公式
二、基本积分方法
例题分析
一、简单有理分式的积分
二、三角函数的有理分式的积分
三、简单无理式的积分
四、两种不同类型的函数相乘的积分
五、被积函数中含有导数或变限函数的积分
六、对称区间上的定积分,周期函数的定积分
七、含参变量带绝对值号的定积分
八、积分计算杂例
3反常积分及其计算
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、反常积分的计算与反常积分的敛散性
二、关于奇、偶函数的反常积分
4定积分的应用
内容精讲
一、基本方法
二、重要几何公式与物理应用
例题分析
一、几何应用
二、物理应用
5定积分的证明题
内容精讲
例题分析
一、讨论变限积分所定义的函数的奇偶性、周期性、极值、单调性等
二、由积分定义的函数求极限
三、积分不等式的证明
四、零点问题
第四章 多元函数微积分学
考点与要求
1多元函数的极限、连续、偏导数与全微分
内容精讲
一、多元函数
二、二元函数的极限与连续
三、二元函数的偏导数与全微分
例题分析
一、讨论二重极限
二、讨论二元函数的连续性、偏导数存在性
三、讨论二元函数的可微性
2多元函数的微分法
内容精讲
一、复合函数的偏导数与全微分
二、隐函数的偏导数与全微分
例题分析
一、求复合函数的偏导数与全微分
二、求隐函数的偏导数与全微分
3极值与最值
内容精讲
一、无条件极值
二、条件极值
例题分析
一、无条件极值问题
二、条件极值(最值)问题
三、多元函数的最大(小)值问题
4二重积分
内容精讲
一、二重积分的定义及几何意义
二、二重积分的性质
三、二重积分的计算
例题分析
一、计算二重积分
二、累次积分交换积分次序及计算
三、与二重积分有关的综合题
四、与二重积分有关的积分不等式问题
第五章 常微分方程
考点与要求
1常微分方程
内容精讲
一、微分方程的基本概念
二、常见的几类一阶方程及解法
三、可降阶的高阶微分方程
四、高阶线性方程
例题分析
一、微分方程求解
二、微分方程的综合题
三、微分方程的应用
第二篇 线性代数
第一章 行列式
考点与要求
内容精讲
例题分析
一、数字型行列式的计算
二、抽象型行列式的计算
三、行列式|A|是否为零的判定
四、关于代数余子式求和
第二章 矩阵
考点与要求
内容精讲
1矩阵的概念及运算
一、矩阵的概念
二、矩阵的运算
三、矩阵的运算规则
四、特殊矩阵
2可逆矩阵
一、可逆矩阵的概念
二、n阶矩阵A可逆的充分必要条件
三、逆矩阵的运算性质
四、求逆矩阵的方法
3初等变换、初等矩阵
一、定义
二、初等矩阵与初等变换的性质
4矩阵的秩
一、矩阵秩的概念
二、矩阵秩的公式
5分块矩阵
一、分块矩阵的概念
二、分块矩阵的运算
例题分析
一、矩阵的概念及运算
二、特殊方阵的幂
三、伴随矩阵的相关问题
四、可逆矩阵的相关问题
五、初等变换、初等矩阵
六、矩阵秩的计算
第三章 向量
考点与要求
内容精讲
1n维向量的概念与运算
2线性表出、线性相关
3极大线性无关组、秩
4Schmidt正交化、正交矩阵
例题分析
一、线性相关的判别
二、向量的线性表示
三、线性相关与线性无关的证明
四、秩与极大线性无关组
五、正交化、正交矩阵
第四章 线性方程组
考点与要求
内容精讲
1克拉默法则
2齐次线性方程组
3非齐次线性方程组
例题分析
一、线性方程组的基本概念题
二、线性方程组的求解
三、基础解系
四、AX=0的系数行向量和解向量的关系,由AX=0的基础解系反求A
五、线性方程组系数列向量与解向量的关系
六、两个方程组的公共解
七、同解方程组
八、线性方程组的有关杂题
第五章 特征值、特征向量、相似矩阵
考点与要求
内容精讲
1特征值、特征向量
一、定义
二、特征值的性质
三、求特征值、特征向量的方法
2相似矩阵、矩阵的相似对角化
一、定义
二、矩阵可相似对角化的充分必要条件
三、相似矩阵的性质及相似矩阵的必要条件
3实对称矩阵的相似对角化
一、定义
二、实对称阵的特征值,特征向量及相似对角化
三、实对称矩阵正交相似于对角阵的步骤
例题分析
一、特征值,特征向量的求法
二、两个矩阵有相同的特征值的证明
三、关于特征向量及其他给出特征值特征向量的方法
四、矩阵是否相似于对角阵
五、利用特征值、特征向量及相似矩阵确定参数
六、由特征值、特征向量反求A
七、矩阵相似及相似标准形
八、相似对角阵的应用
第六章 二次型
考点与要求
内容精讲
1二次型的定义、矩阵表示,合同矩阵
一、二次型概念
二、二次型的矩阵表示
2化二次型为标准形、规范形合同二次型
一、定义
3正定二次型、正定矩阵
一、定义
例题分析
一、二次型的矩阵表示
二、化二次型为标准形、规范形
三、合同矩阵、合同二次型
四、正定性的判别
五、正定二次型的证明
六、综合题
第一章 函数极限连续
考点与要求
1函数
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、求分段函数的复合函数
二、由函数的奇偶性与周期性构造函数
三、求反函数的表达式
四、关于函数有界(无界)的讨论
2极限
内容精讲
一、定义
二、重要性质、定理、公式
三、计算极限的一些有关方法
例题分析
一、求函数的极限
二、已知极限值求其中的某些参数,或已知极限求另一与此有关的某极限
三、含有|x|,e1x的x→0时的极限,含有取整函数[x]的x趋于整数时的极限
四、无穷小的比较
五、数列的极限
六、极限运算定理的正确运用
3函数的连续与间断
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、讨论函数的连续与间断
二、在连续条件下求参数
三、连续函数的零点问题
第二章 一元函数微分学
考点与要求
1导数与微分,导数的计算
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、按定义求一点处的导数
二、已知f(x)在某点x=x0处可导,求与此有关的某极限或其中某参数,或已知某极限求f(x)在x=x0处的导数
三、绝对值函数的导数
四、由极限式表示的函数的可导性
五、导数与微分、增量的关系
六、求导数的计算题
2导数的应用
内容精讲
一、定义
二、重要性质、定理、公式与方法
例题分析
一、增减性、极值、凹凸性、拐点的讨论
二、渐近线
三、曲率与曲率圆
四、最大值、最小值问题
3中值定理、不等式与零点问题
内容精讲
一、重要定理
二、重要方法
例题分析
一、不等式的证明
二、f(x)的零点与f′(x)的零点问题
三、复合函数ψ(x,f(x),f′(x))的零点
四、复合函数ψ(x,f(x),f′(x),f″(x))的零点
五、“双中值”问题
六、零点的个数问题
七、证明存在某ξ满足某不等式
八、利用中值定理求极限、f′(x)与f(x)的极限关系
第三章 一元函数积分学
考点与要求
1不定积分与定积分的概念、性质、理论
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、分段函数的不定积分与定积分
二、定积分与原函数的存在性
三、奇、偶函数、周期函数的原函数及变限积分
2不定积分与定积分的计算
内容精讲
一、基本积分公式
二、基本积分方法
例题分析
一、简单有理分式的积分
二、三角函数的有理分式的积分
三、简单无理式的积分
四、两种不同类型的函数相乘的积分
五、被积函数中含有导数或变限函数的积分
六、对称区间上的定积分,周期函数的定积分
七、含参变量带绝对值号的定积分
八、积分计算杂例
3反常积分及其计算
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、反常积分的计算与反常积分的敛散性
二、关于奇、偶函数的反常积分
4定积分的应用
内容精讲
一、基本方法
二、重要几何公式与物理应用
例题分析
一、几何应用
二、物理应用
5定积分的证明题
内容精讲
例题分析
一、讨论变限积分所定义的函数的奇偶性、周期性、极值、单调性等
二、由积分定义的函数求极限
三、积分不等式的证明
四、零点问题
第四章 多元函数微积分学
考点与要求
1多元函数的极限、连续、偏导数与全微分
内容精讲
一、多元函数
二、二元函数的极限与连续
三、二元函数的偏导数与全微分
例题分析
一、讨论二重极限
二、讨论二元函数的连续性、偏导数存在性
三、讨论二元函数的可微性
2多元函数的微分法
内容精讲
一、复合函数的偏导数与全微分
二、隐函数的偏导数与全微分
例题分析
一、求复合函数的偏导数与全微分
二、求隐函数的偏导数与全微分
3极值与最值
内容精讲
一、无条件极值
二、条件极值
例题分析
一、无条件极值问题
二、条件极值(最值)问题
三、多元函数的最大(小)值问题
4二重积分
内容精讲
一、二重积分的定义及几何意义
二、二重积分的性质
三、二重积分的计算
例题分析
一、计算二重积分
二、累次积分交换积分次序及计算
三、与二重积分有关的综合题
四、与二重积分有关的积分不等式问题
第五章 常微分方程
考点与要求
1常微分方程
内容精讲
一、微分方程的基本概念
二、常见的几类一阶方程及解法
三、可降阶的高阶微分方程
四、高阶线性方程
例题分析
一、微分方程求解
二、微分方程的综合题
三、微分方程的应用
第二篇 线性代数
第一章 行列式
考点与要求
内容精讲
例题分析
一、数字型行列式的计算
二、抽象型行列式的计算
三、行列式|A|是否为零的判定
四、关于代数余子式求和
第二章 矩阵
考点与要求
内容精讲
1矩阵的概念及运算
一、矩阵的概念
二、矩阵的运算
三、矩阵的运算规则
四、特殊矩阵
2可逆矩阵
一、可逆矩阵的概念
二、n阶矩阵A可逆的充分必要条件
三、逆矩阵的运算性质
四、求逆矩阵的方法
3初等变换、初等矩阵
一、定义
二、初等矩阵与初等变换的性质
4矩阵的秩
一、矩阵秩的概念
二、矩阵秩的公式
5分块矩阵
一、分块矩阵的概念
二、分块矩阵的运算
例题分析
一、矩阵的概念及运算
二、特殊方阵的幂
三、伴随矩阵的相关问题
四、可逆矩阵的相关问题
五、初等变换、初等矩阵
六、矩阵秩的计算
第三章 向量
考点与要求
内容精讲
1n维向量的概念与运算
2线性表出、线性相关
3极大线性无关组、秩
4Schmidt正交化、正交矩阵
例题分析
一、线性相关的判别
二、向量的线性表示
三、线性相关与线性无关的证明
四、秩与极大线性无关组
五、正交化、正交矩阵
第四章 线性方程组
考点与要求
内容精讲
1克拉默法则
2齐次线性方程组
3非齐次线性方程组
例题分析
一、线性方程组的基本概念题
二、线性方程组的求解
三、基础解系
四、AX=0的系数行向量和解向量的关系,由AX=0的基础解系反求A
五、线性方程组系数列向量与解向量的关系
六、两个方程组的公共解
七、同解方程组
八、线性方程组的有关杂题
第五章 特征值、特征向量、相似矩阵
考点与要求
内容精讲
1特征值、特征向量
一、定义
二、特征值的性质
三、求特征值、特征向量的方法
2相似矩阵、矩阵的相似对角化
一、定义
二、矩阵可相似对角化的充分必要条件
三、相似矩阵的性质及相似矩阵的必要条件
3实对称矩阵的相似对角化
一、定义
二、实对称阵的特征值,特征向量及相似对角化
三、实对称矩阵正交相似于对角阵的步骤
例题分析
一、特征值,特征向量的求法
二、两个矩阵有相同的特征值的证明
三、关于特征向量及其他给出特征值特征向量的方法
四、矩阵是否相似于对角阵
五、利用特征值、特征向量及相似矩阵确定参数
六、由特征值、特征向量反求A
七、矩阵相似及相似标准形
八、相似对角阵的应用
第六章 二次型
考点与要求
内容精讲
1二次型的定义、矩阵表示,合同矩阵
一、二次型概念
二、二次型的矩阵表示
2化二次型为标准形、规范形合同二次型
一、定义
3正定二次型、正定矩阵
一、定义
例题分析
一、二次型的矩阵表示
二、化二次型为标准形、规范形
三、合同矩阵、合同二次型
四、正定性的判别
五、正定二次型的证明
六、综合题
【2017李永乐·王式安唯一考研数学复习全书数学二截图】
最新购买
关于我们
以下资料由考研派研究生团队整理提供,其团队成员覆盖各个院系,专门搜集本校的考研真题和高分笔记、题库等资料。
专业课资料作为考研核心资料,部分专业重题概率极高,必须吃透,反复复习。如有需要高分研究生学长一对一辅导的,也可联系我们安排。
考研派网站,为大家提供安全的交易平台,资料有任何问题,均可向我们投诉,我们会督促考研派研究生团队解决问题,保障同学们的权益。
手机商城
扫描二维码,更便捷的购买资料
不仅有商品,还有更多资讯和活动
购买流程
找到要考的专业或资料
方法一:选择学校->学院->专业
方法二:查找功能
点击浏览招生简章+资料详情
通过招生简章了解本专业需要的资料
查看资料详情了解资料要点
点击购买或加入购物车
支付方式:支付宝
填写付款信息并付款
请确认联系人、联系方式和收货地址
付款后3-5天可到货,可查询快递信息
若有疑问,可联系在线学姐
学姐联系方式:4006230309