2022年黑龙江大学自命题数学一硕士研究生考研大纲及参考书目

发布时间:2021-10-12 编辑:考研派小莉 推荐访问:
2022年黑龙江大学自命题数学一硕士研究生考研大纲及参考书目

2022年黑龙江大学自命题数学一硕士研究生考研大纲及参考书目内容如下,更多考研资讯请关注我们网站的更新!敬请收藏本站,或下载我们的考研派APP和考研派微信公众号(里面有非常多的免费考研资源可以领取,有各种考研问题,也可直接加我们网站上的研究生学姐微信,全程免费答疑,助各位考研一臂之力,争取早日考上理想中的研究生院校。)

2022年黑龙江大学自命题数学一硕士研究生考研大纲及参考书目 正文

考试科目名称:自命题数学一   考试科目代码:[601]
一、考试要求
具有高中代数,平面解析几何,立体几何等基本知识。要求考生掌握一元函数微积分及其应用;常微分方程;空间解析几何;多元函数微积分及其应用;级数的一般理论及综合运算能力。
二、考试内容
第一章 函数与极限
§1 映射与函数
集合,映射,函数;
§2 数列极限
数列极限的定义,收敛数列的性质;
§3 函数的极限
函数的极限的定义,函数极限的性质;
§4 无穷小与无穷大
无穷小,无穷大;
§5 极限运算法则
§6 极限存在准则,两个重要极限
§7 无穷小的比较
§8 函数的连续性与间断点
函数的连续性,函数的间断点;
§9 连续函数的运算与初等函数的连续性
连续函数的和、差、积、商的连续性,反函数与复合函数的连续性,初等函数的连续性;
§10 闭区间上连续函数的性质
有界性与最大值最小值定理,零点定理与介值定理;
第二章 导数与微分
§1导数的概念
引例,导数的定义,导数的几何意义,函数可导性与连续性的关系;
§2函数的求导法则
函数的和、差、积、商的求导法则,反函数的求导法则、复合函数的求导法则,基本求导法则与导数公式;
§3高阶导数
§4隐函数及由参数方程所确定的函数的导数 相关变化率
隐函数的导数,由参数方程所确定的函数的导数,相关变化率;
§5函数的微分
微分的定义,微分的几何意义,基本初等函数的微分公式与微分运算法则,微分在近似计算中的应用;
第三章 微分中值定理与导数的应用
§1微分中值定理
Rolle定理,Lagrange中值定理,Cauchy中值定理;
§2 洛必达法则
§3 泰勒公式
§4 函数的单调性与曲线的凹凸性
函数单调性的判定法,曲线的凹凸性与拐点;
§5 函数的极值与最大值最小值
函数的极值及其求法,最大值最小值问题;
§6 函数图形的描绘
§7 曲率
弧微分,曲率及其计算公式,曲率圆与曲率半径;
§8 方程的近似解
二分法,切线法;
第四章 不定积分
§1 不定积分的概念与性质
原函数与不定积分的概念,基本积分表,不定积分的性质;
§2 换元积分法
第一类换元法,第二类换元法;
§3 分部积分法
§4 有理函数的积分
有理函数的积分,可化为有理函数的积分举例;
§5 积分表的使用
第五章 定积分
§1 定积分的概念与性质
定积分问题举例,定积分定义,定积分的近似计算,定积分的性质;
§2 微积分基本公式
变速直线运动中位置函数与速度函数之间的联系,积分上限函数及其导数,Newton—Leibniz公式;
§3 定积分的换元法和分部积分法
定积分的换元法,定积分的分部积分法;
§4 反常积分
无穷限的反常积分,无界函数的反常积分;
第六章 定积分的应用:
§1 定积分的元素法
§2 定积分在几何学上的应用
平面图形的面积,体积,平面曲线的弧长;
§3 定积分在物理学上的应用
变力沿直线所作的功,水压力,引力;
第七章 微分方程
§1 微分方程的基本概念
§2 可分离变量的微分方程
§3 齐次方程
齐次方程;
§4 一阶线性微分方程
线性方程;
§5 可降阶的高阶微分方程
型微分方程, 型微分方程, 型微分方程;
§6 高阶线性微分方程
二节线性微分方程举例,线性微分方程的解的结构;
§7常系数齐次线性微分方程
§8常系数非齐次线性微分方程
型,型;
第八章 空间解析几何与向量代数
§1 向量及其线性运算
向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量的模、方向角、投影;
§2 数量积 向量积
两向量的数量积、两向量的向量积;
§3 曲面及其方程
曲面方程的概念,旋转曲面,柱面,二次曲面;
§4 空间曲线及其方程
空间曲线的一般方程,空间曲线的参数方程,空间曲线在坐标面上的投影;
§5 平面及其方程
平面的点法式方程,平面的一般方程,两平面的夹角;
§6 空间直线及其方程
空间直线的一般方程,空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角,杂例;
第九章 多元函数微分法及其应用
§1 多元函数的基本概念
平面点集、多元函数的概念,多元函数的极限,多元函数的连续性;
§2 偏导数
偏导数的定义及其计算法,高阶偏导数;
§3 全微分
全微分的定义;
§4 多元复合函数求导法则
§5 隐函数求导公式
一个方程的情形,方程组的情形;
§6 多元函数微分学的几何应用
一元向量值函数及其导数,空间曲线的切线与法平面,曲面的切平面与法线;
§7 方向导数与梯度
方向导数、梯度;
§8 多元函数的极值及其求法
多元函数的极值及最大值、最小值,条件极值,拉格朗日乘数法;
第十章 重积分
§1 二重积分的概念与性质
二重积分的概念,二重积分的性质;
§2 二重积分计算法
利用直角坐标系计算二重积分,利用极坐标系计算二重积分;
§3 三重积分
三重积分的概念,三重积分的计算;
§4 重积分的应用
曲面的面积,质心,转动惯量,引力;
第十一章 曲线积分与曲面积分
§1 对弧长的曲线积分
对弧长的曲线积分的概念与性质,对弧长的曲线积分的计算法;
§2 对坐标的曲线积分
对坐标的曲线积分的概念与性质,对坐标的曲线积分的计算法,两类曲线积分之间的联系;
§3 Green(格林)公式及其应用
Green公式,平面上曲线积分与路径无关的条件,二元函数的全微分求积;
§4 对面积的曲面积分
对面积的曲面积分的概念与性质,对面积的曲面积分的计算法;
§5 对坐标的曲面积分
对坐标的曲面积分的概念与性质,对坐标的曲面积分的计算法,两类曲面积分之间的联系;
§6 高斯公式
高斯公式;
§7  斯托克斯公式
斯托克斯公式;
第十二章 无穷级数
§1 常数项级数的概念和性质
常数项级数的概念,收敛级数的基本性质;
§2 常数项级数的审敛法
正项级数及其审敛法,交错级数及其审敛法,绝对收敛与条件收敛;
§3 幂级数
函数项级数的概念,幂级数及其收敛性,幂级数的运算;
§4 函数展开成幂级数
§5函数的幂级数展开式的应用
近似计算、微分方程的幂级数解法、欧拉公式;
§7 傅里叶级数
三角级数 三角函数系的正交性,函数展开成傅里叶级数,正弦级数和余弦级数;
§8 一般周期函数的傅里叶级数
周期为2l的周期函数的傅里叶级数;
三、试卷结构
1.考试时间:180分钟
2.试卷分值:150分
3.题型结构:(1)选择题
(2)填空
(3)大题(包括证明题、计算题)
四、参考书目
《高等数学》(第六版),同济大学数学系,高等教育出版社。
黑龙江大学

添加黑龙江大学学姐微信,或微信搜索公众号“考研派小站”,关注[考研派小站]微信公众号,在考研派小站微信号输入[黑龙江大学考研分数线、黑龙江大学报录比、黑龙江大学考研群、黑龙江大学学姐微信、黑龙江大学考研真题、黑龙江大学专业目录、黑龙江大学排名、黑龙江大学保研、黑龙江大学公众号、黑龙江大学研究生招生)]即可在手机上查看相对应黑龙江大学考研信息或资源

黑龙江大学考研公众号 考研派小站公众号

本文来源:http://www.okaoyan.com/hljdx/cksm_497449.html

推荐阅读